多表查询、事务、索引

2023-12-14 12:50:22

目录

数据准备

分类

内连接

外连接

子查询

事务

四大特性

索引


数据准备

SQL脚本:

#建议:创建新的数据库
create database db04;
use db04;

-- 部门表
create table tb_dept
(
    id          int unsigned primary key auto_increment comment '主键ID',
    name        varchar(10) not null unique comment '部门名称',
    create_time datetime    not null comment '创建时间',
    update_time datetime    not null comment '修改时间'
) comment '部门表';
-- 部门表测试
insert into tb_dept (id, name, create_time, update_time)
values (1, '学工部', now(), now()),
       (2, '教研部', now(), now()),
       (3, '咨询部', now(), now()),
       (4, '就业部', now(), now()),
       (5, '人事部', now(), now());

-- 员工表
create table tb_emp
(
    id          int unsigned primary key auto_increment comment 'ID',
    username    varchar(20)      not null unique comment '用户名',
    password    varchar(32) default '123456' comment '密码',
    name        varchar(10)      not null comment '姓名',
    gender      tinyint unsigned not null comment '性别, 说明: 1 男, 2 女',
    image       varchar(300) comment '图像',
    job         tinyint unsigned comment '职位, 说明: 1 班主任,2 讲师, 3 学工主管, 4 教研主管, 5 咨询师',
    entrydate   date comment '入职时间',
    dept_id     int unsigned comment '部门ID',
    create_time datetime         not null comment '创建时间',
    update_time datetime         not null comment '修改时间'
) comment '员工表';
-- 员工表测试数据
INSERT INTO tb_emp(id, username, password, name, gender, image, job, entrydate,dept_id, create_time, update_time) 
VALUES 
(1,'jinyong','123456','金庸',1,'1.jpg',4,'2000-01-01',2,now(),now()),
(2,'zhangwuji','123456','张无忌',1,'2.jpg',2,'2015-01-01',2,now(),now()),
(3,'yangxiao','123456','杨逍',1,'3.jpg',2,'2008-05-01',2,now(),now()),
(4,'weiyixiao','123456','韦一笑',1,'4.jpg',2,'2007-01-01',2,now(),now()),
(5,'changyuchun','123456','常遇春',1,'5.jpg',2,'2012-12-05',2,now(),now()),
(6,'xiaozhao','123456','小昭',2,'6.jpg',3,'2013-09-05',1,now(),now()),
(7,'jixiaofu','123456','纪晓芙',2,'7.jpg',1,'2005-08-01',1,now(),now()),
(8,'zhouzhiruo','123456','周芷若',2,'8.jpg',1,'2014-11-09',1,now(),now()),
(9,'dingminjun','123456','丁敏君',2,'9.jpg',1,'2011-03-11',1,now(),now()),
(10,'zhaomin','123456','赵敏',2,'10.jpg',1,'2013-09-05',1,now(),now()),
(11,'luzhangke','123456','鹿杖客',1,'11.jpg',5,'2007-02-01',3,now(),now()),
(12,'hebiweng','123456','鹤笔翁',1,'12.jpg',5,'2008-08-18',3,now(),now()),
(13,'fangdongbai','123456','方东白',1,'13.jpg',5,'2012-11-01',3,now(),now()),
(14,'zhangsanfeng','123456','张三丰',1,'14.jpg',2,'2002-08-01',2,now(),now()),
(15,'yulianzhou','123456','俞莲舟',1,'15.jpg',2,'2011-05-01',2,now(),now()),
(16,'songyuanqiao','123456','宋远桥',1,'16.jpg',2,'2007-01-01',2,now(),now()),
(17,'chenyouliang','123456','陈友谅',1,'17.jpg',NULL,'2015-03-21',NULL,now(),now());

多表查询:查询时从多张表中获取所需数据

单表查询的SQL语句:select 字段列表 from 表名;
那么执行多表查询,只需要使用逗号分隔多张表即可,如: select 字段列表 from 表1, 表2;

查询用户表和部门表中的数据:

select * from  tb_emp , tb_dept;

?

此时,我们看到查询结果中包含了大量的结果集,总共85条记录,而这其实就是员工表所有的记录(17行)与部门表所有记录(5行)的所有组合情况,这种现象称之为笛卡尔积。

笛卡尔积:笛卡尔乘积是指在数学中,两个集合(A集合和B集合)的所有组合情况。

?

?在多表查询时,需要消除无效的笛卡尔积,只保留表关联部分的数据

?

在SQL语句中,如何去除无效的笛卡尔积呢?只需要给多表查询加上连接查询的条件即可?

select * from tb_emp , tb_dept where tb_emp.dept_id = tb_dept.id ;

?

由于id为17的员工,没有dept_id字段值,所以在多表查询时,根据连接查询的条件并没有查询到。

分类

多表查询可以分为:

  1. 连接查询

    • 内连接:相当于查询A、B交集部分数据

  2. 外连接

    • 左外连接:查询左表所有数据(包括两张表交集部分数据)

    • 右外连接:查询右表所有数据(包括两张表交集部分数据)

  3. 子查询

内连接

内连接查询:查询两表或多表中交集部分数据。

内连接从语法上可以分为:

  • 隐式内连接

  • 显式内连接

隐式内连接语法:

select  字段列表   from   表1 , 表2   where  条件 ... ;

显式内连接语法:

select  字段列表   from   表1  [ inner ]  join 表2  on  连接条件 ... ;

案例:查询员工的姓名及所属的部门名称

  • 隐式内连接实现

select tb_emp.name , tb_dept.name -- 分别查询两张表中的数据
from tb_emp , tb_dept -- 关联两张表
where tb_emp.dept_id = tb_dept.id; -- 消除笛卡尔积
  • 显式内连接实现

select tb_emp.name , tb_dept.name
from tb_emp inner join tb_dept
on tb_emp.dept_id = tb_dept.id;

?

多表查询时给表起别名:

  • tableA as 别名1 , tableB as 别名2 ;

  • tableA 别名1 , tableB 别名2 ;

?

使用了别名的多表查询:

select emp.name , dept.name
from tb_emp emp inner join tb_dept dept
on emp.dept_id = dept.id;

注意事项:

一旦为表起了别名,就不能再使用表名来指定对应的字段了,此时只能够使用别名来指定字段。

外连接

外连接分为两种:左外连接 和 右外连接。

左外连接语法结构:

select  字段列表   from   表1  left  [ outer ]  join 表2  on  连接条件 ... ;

左外连接相当于查询表1(左表)的所有数据,当然也包含表1和表2交集部分的数据

右外连接语法结构:

select  字段列表   from   表1  right  [ outer ]  join 表2  on  连接条件 ... ;

右外连接相当于查询表2(右表)的所有数据,当然也包含表1和表2交集部分的数据

案例:查询员工表中所有员工的姓名, 和对应的部门名称

-- 左外连接:以left join关键字左边的表为主表,查询主表中所有数据,
-- 以及和主表匹配的右边表中的数据
select emp.name , dept.name
from tb_emp AS emp left join tb_dept AS dept 
     on emp.dept_id = dept.id;

?

?案例:查询部门表中所有部门的名称, 和对应的员工名称

-- 右外连接
select dept.name , emp.name
from tb_emp AS emp right join  tb_dept AS dept
     on emp.dept_id = dept.id;

注意事项:左外连接和右外连接是可以相互替换的,只需要调整连接查询时SQL语句中表的先后顺序就可以了。而我们在日常开发使用时,更偏向于左外连接。

子查询

SQL语句中嵌套select语句,称为嵌套查询,又称子查询。

SELECT  *  FROM   t1   WHERE  column1 =  ( SELECT  column1  FROM  t2 ... );

子查询外部的语句可以是insert / update / delete / select 的任何一个,最常见的是 select

根据子查询结果的不同分为:

  1. 标量子查询(子查询结果为单个值[一行一列])

  2. 列子查询(子查询结果为一列,但可以是多行)

  3. 行子查询(子查询结果为一行,但可以是多列)

  4. 表子查询(子查询结果为多行多列[相当于子查询结果是一张表])

子查询可以书写的位置:

  1. where之后

  2. from之后

  3. select之后

标量子查询

?

案例1:查询"教研部"的所有员工信息

可以将需求分解为两步:
1. 查询 "教研部" 部门ID
2. 根据 "教研部" 部门ID,查询员工信息

-- 1.查询"教研部"部门ID
select id from tb_dept where name = '教研部';    #查询结果:2
-- 2.根据"教研部"部门ID, 查询员工信息
select * from tb_emp where dept_id = 2;

-- 合并出上两条SQL语句
select * from tb_emp where dept_id = 
(select id from tb_dept where name = '教研部');

?

案例2:查询在 "方东白" 入职之后的员工信息

可以将需求分解为两步:
1. 查询 方东白 的入职日期
2. 查询 指定入职日期之后入职的员工信息
-- 1.查询"方东白"的入职日期
select entrydate from tb_emp where name = '方东白';     #查询结果:2012-11-01
-- 2.查询指定入职日期之后入职的员工信息
select * from tb_emp where entrydate > '2012-11-01';

-- 合并以上两条SQL语句
select * from tb_emp where entrydate > (select entrydate from tb_emp where name = '方东白');

?

列子查询

子查询返回的结果是一列(可以是多行),这种子查询称为列子查询。

常用的操作符:

操作符描述
IN在指定的集合范围之内,多选一
NOT IN不在指定的集合范围之内

案例:查询"教研部"和"咨询部"的所有员工信息

分解为以下两步:
1. 查询 "销售部" 和 "市场部" 的部门ID
2. 根据部门ID, 查询员工信息
-- 1.查询"销售部"和"市场部"的部门ID
select id from tb_dept where name = '教研部' or name = '咨询部';    #查询结果:3,2
-- 2.根据部门ID, 查询员工信息
select * from tb_emp where dept_id in (3,2);

-- 合并以上两条SQL语句
select * from tb_emp where dept_id in (select id from tb_dept where name = '教研部' or name = '咨询部');

?

行子查询

子查询返回的结果是一行(可以是多列),这种子查询称为行子查询。

常用的操作符:= 、<> 、IN 、NOT IN

案例:查询与"韦一笑"的入职日期及职位都相同的员工信息

可以拆解为两步进行: 
1. 查询 "韦一笑" 的入职日期 及 职位
2. 查询与"韦一笑"的入职日期及职位相同的员工信息 
-- 查询"韦一笑"的入职日期 及 职位
select entrydate , job from tb_emp where name = '韦一笑';  #查询结果: 2007-01-01 , 2
-- 查询与"韦一笑"的入职日期及职位相同的员工信息
select * from tb_emp where (entrydate,job) = ('2007-01-01',2);

-- 合并以上两条SQL语句
select * from tb_emp where (entrydate,job) = (select entrydate , job from tb_emp where name = '韦一笑');

?

表子查询

子查询返回的结果是多行多列,常作为临时表,这种子查询称为表子查询

案例:查询入职日期是 "2006-01-01" 之后的员工信息 , 及其部门信息

分解为两步执行:
1. 查询入职日期是 "2006-01-01" 之后的员工信息
2. 基于查询到的员工信息,在查询对应的部门信息
select * from emp where entrydate > '2006-01-01';
select e.*, d.* from (select * from emp where entrydate > '2006-01-01') e left join dept d on e.dept_id = d.id ;

案例

准备环境

将资准备好的多表查询的数据准备的SQL脚本导入数据库中。

?

  • 分类表:category

  • 菜品表:dish

  • 套餐表:setmeal

  • 套餐菜品关系表:setmeal_dish

?

需求实现

  1. 查询价格低于 10元 的菜品的名称 、价格 及其 菜品的分类名称

/*查询技巧:
     明确1:查询需要用到哪些字段
        菜品名称、菜品价格 、 菜品分类名
     明确2:查询的字段分别归属于哪张表
        菜品表:[菜品名称、菜品价格]
        分类表:[分类名]
     明确3:如查多表,建立表与表之间的关联
        菜品表.caategory_id = 分类表.id
     其他:(其他条件、其他要求)
        价格 < 10
*/
select d.name , d.price , c.name
from dish AS d , category AS c
where d.category_id = c.id
      and d.price < 10;

?

查询所有价格在 10元(含)到50元(含)之间 且 状态为"起售"的菜品名称、价格及其分类名称 (即使菜品没有分类 , 也要将菜品查询出来) ?

select d.name , d.price, c.name
from dish AS d left join category AS c on d.category_id = c.id
where d.price between 10 and 50
      and d.status = 1;

?

  1. 查询每个分类下最贵的菜品, 展示出分类的名称、最贵的菜品的价格

select c.name , max(d.price)
from dish AS d , category AS c
where d.category_id = c.id
group by c.name;

? ??

?查询各个分类下 菜品状态为 "起售" , 并且 该分类下菜品总数量大于等于3 的 分类名称

/*查询技巧:
     明确1:查询需要用到哪些字段
        分类名称、菜品总数量
     明确2:查询用到的字段分别归属于哪张表
        分类表:[分类名]
        菜品表:[菜品状态]
     明确3:如查多表,建立表与表之间的关联
        菜品表.caategory_id = 分类表.id
     其他:(其他条件、其他要求)
        条件:菜品状态 = 1 (1表示起售)
        分组:分类名
        分组后条件: 总数量 >= 3
*/
select c.name , count(*)
from dish AS d , category AS c
where d.category_id = c.id
      and d.status = 1 -- 起售状态
group by c.name  -- 按照分类名分组
having count(*)>=3; -- 分组后筛选菜品总数据>=3

?

?查询出 "商务套餐A" 中包含了哪些菜品 (展示出套餐名称、价格, 包含的菜品名称、价格、份数)

select s.name, s.price, d.name, d.price, sd.copies
from setmeal AS s , setmeal_dish AS sd , dish AS d
where s.id = sd.setmeal_id and sd.dish_id = d.id
      and s.name='商务套餐A';

?查询出低于菜品平均价格的菜品信息 (展示出菜品名称、菜品价格)

-- 1.计算菜品平均价格
select avg(price) from dish;    -- 查询结果:37.736842
-- 2.查询出低于菜品平均价格的菜品信息
select * from dish where price < 37.736842;

-- 合并以上两条SQL语句
select * from dish where price < (select avg(price) from dish);

事务

事务是一组操作的集合,它是一个不可分割的工作单位。事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

事务作用:保证在一个事务中多次操作数据库表中数据时,要么全都成功,要么全都失败

操作

MYSQL中有两种方式进行事务的操作:

  1. 自动提交事务:即执行一条sql语句提交一次事务。(默认MySQL的事务是自动提交)

  2. 手动提交事务:先开启,再提交

事务操作有关的SQL语句:

SQL语句描述
start transaction; / begin ;开启手动控制事务
commit;提交事务
rollback;回滚事务

手动提交事务使用步骤:

  • 第1种情况:开启事务 => 执行SQL语句 => 成功 => 提交事务

  • 第2种情况:开启事务 => 执行SQL语句 => 失败 => 回滚事务

四大特性

面试题:事务有哪些特性

  • 原子性(Atomicity):事务是不可分割的最小单元,要么全部成功,要么全部失败。

  • 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。

????????如果事务成功的完成,那么数据库的所有变化将生效。

????????如果事务执行出现错误,那么数据库的所有变化将会被回滚(撤销),返回到原始状态。

  • 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。多个用户并发的访问数据库时,一个用户的事务不能被其他用户的事务干扰,多个并发的事务之间要相互隔离。 一个事务的成功或者失败对于其他的事务是没有影响

  • 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。哪怕数据库发生异常,重启之后数据亦然存在。

事务的四大特性简称为:ACID ?

索引

索引(index):是帮助数据库高效获取数据的数据结构 。

  • 简单来讲,就是使用索引可以提高查询的效率。

测试没有使用索引的查询:

添加索引后查询:

-- 添加索引
create index idx_sku_sn on tb_sku (sn);  #在添加索引时,也需要消耗时间
-- 查询数据(使用了索引)
select * from tb_sku where sn = '100000003145008';

?

优点:

  1. 提高数据查询的效率,降低数据库的IO成本。

  2. 通过索引列对数据进行排序,降低数据排序的成本,降低CPU消耗。

缺点:

  1. 索引会占用存储空间。

  2. 索引大大提高了查询效率,同时却也降低了insert、update、delete的效率。

结构

MySQL数据库支持的索引结构有很多,如:Hash索引、B+Tree索引、Full-Text索引等。

我们平常所说的索引,如果没有特别指明,都是指默认的 B+Tree 结构组织的索引。

?

B+Tree结构:

  • 每一个节点,可以存储多个key(有n个key,就有n个指针)

  • 节点分为:叶子节点、非叶子节点

    • 叶子节点,就是最后一层子节点,所有的数据都存储在叶子节点上

    • 非叶子节点,不是树结构最下面的节点,用于索引数据,存储的的是:key+指针

  • 为了提高范围查询效率,叶子节点形成了一个双向链表,便于数据的排序及区间范围查询

拓展:

非叶子节点都是由key+指针域组成的,一个key占8字节,一个指针占6字节,而一个节点总共容量是16KB,那么可以计算出一个节点可以存储的元素个数:16*1024字节 / (8+6)=1170个元素。

- 查看mysql索引节点大小:show global status like 'innodb_page_size';    -- 节点大小:16384

当根节点中可以存储1170个元素,那么根据每个元素的地址值又会找到下面的子节点,每个子节点也会存储1170个元素,那么第二层即第二次IO的时候就会找到数据大概是:1170*1170=135W。也就是说B+Tree数据结构中只需要经历两次磁盘IO就可以找到135W条数据。

对于第二层每个元素有指针,那么会找到第三层,第三层由key+数据组成,假设key+数据总大小是1KB,而每个节点一共能存储16KB,所以一个第三层一个节点大概可以存储16个元素(即16条记录)。那么结合第二层每个元素通过指针域找到第三层的节点,第二层一共是135W个元素,那么第三层总元素大小就是:135W*16结果就是2000W+的元素个数。

结合上述分析B+Tree有如下优点:

- 千万条数据,B+Tree可以控制在小于等于3的高度
- 所有的数据都存储在叶子节点上,并且底层已经实现了按照索引进行排序,还可以支持范围查询,叶子节点是一个双向链表,支持从小到大或者从大到小查找

语法

创建索引

create  [ unique ]  index 索引名 on  表名 (字段名,... ) ;

?案例:为tb_emp表的name字段建立一个索引

create index idx_emp_name on tb_emp(name);

查看索引

show  index  from  表名;

?案例:查询 tb_emp 表的索引信息

show  index  from  tb_emp;

删除索引

drop  index  索引名  on  表名;

?案例:删除 tb_emp 表中name字段的索引

drop index idx_emp_name on tb_emp;

注意事项:

  • 主键字段,在建表时,会自动创建主键索引

  • 添加唯一约束时,数据库实际上会添加唯一索引

来源:黑马程序员2023新版JavaWeb开发教程,实现javaweb企业开发全流程(涵盖Spring+MyBatis+SpringMVC+SpringBoot等)?

文章来源:https://blog.csdn.net/weixin_52270382/article/details/134988928
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。