CountDownLatch学习一
1、定义
CountDownLatch的作用很简单,就是一个或者一组线程在开始执行操作之前,必须要等到其他线程执行完才可以。我们举一个例子来说明,在考试的时候,老师必须要等到所有人交了试卷才可以走。此时老师就相当于等待线程,而学生就好比是执行的线程。
注意:java中还有一个同步工具类叫做CyclicBarrier,他的作用和CountDownLatch类似。同样是等待其他线程都完成了,才可以进行下一步操作,我们再举一个例子,在打王者的时候,在开局前所有人都必须要加载到100%才可以进入。否则所有玩家都相互等待。
2、方法
CountDownLatch(int count):count为计数器的初始值
countDown(): 每调用一次计数器值-1,直到count被减为0,代表所有线程全部执行完毕。
getCount():获取当前计数器的值。
await(): 等待计数器变为0,即等待所有异步线程执行完毕
3、用法示例
package com.util;
import lombok.SneakyThrows;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
/**
* @author : lssffy
* @Description : 线程同步计数器
* @date : 2023/12/17 17:25
*/
public class CountDownLatchTest {
public static void main(String[] args) throws Exception {
List list = new ArrayList();
for (int i = 0; i <= 100; i++) {
list.add(i);
}
Long start = System.currentTimeMillis();
for (int i = 0; i < list.size(); i++) {
Thread.sleep(100);
}
System.out.println("执行耗时" + (System.currentTimeMillis()-start));
Long end = System.currentTimeMillis();
CountDownLatch latch = new CountDownLatch(10);
for (int i = 0; i < latch.getCount(); i++) {
new Thread(new Test(latch,i,list)).start();
}
latch.await();
System.out.println("执行耗时" + (System.currentTimeMillis()-end));
}
static class Test implements Runnable{
private CountDownLatch latch;
private int i;
private List list;
Test(CountDownLatch latch, int i, List list) {
this.latch = latch;
this.i = i;
this.list = list;
}
@SneakyThrows
@Override
public void run() {
for (int j = i*10; j < (i+1)*10; j++) {
Thread.sleep(10);
}
latch.countDown();
}
}
}
4、原理
CountDownLatch 的实现原理比较简单,它主要依赖于 AQS(AbstractQueuedSynchronizer)框架来实现线程的同步。
在上面我们看到,CountDownLatch主要使用countDown方法进行减1操作,使用await方法进行等到操作。我们进入到源码中看看。本源码基于jdk1.8。特在此说明。
countDown原理
/**
* Decrements the count of the latch, releasing all waiting threads if
* the count reaches zero.
*
* <p>If the current count is greater than zero then it is decremented.
* If the new count is zero then all waiting threads are re-enabled for
* thread scheduling purposes.
*
* <p>If the current count equals zero then nothing happens.
*/
public void countDown() {
sync.releaseShared(1);
}
CountDownLatch里面保存了一个count值,通过减1操作,直到为0时候,等待线程才可以执行。而且通过源码也可以看到这个countDown方法其实是通过sync调用releaseShared(1)来完成的。
/**
* Synchronization control For CountDownLatch.
* Uses AQS state to represent count.
*/
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
在这里我们发现继承了AbstractQueuedSynchronizer(AQS)。AQS的其中一个作用就是维护线程状态和获取释放锁。在这里也就是说CountDownLatch使用AQS机制维护锁状态。而releaseShared(1)方法就是释放了一个共享锁。
await原理
/**
* Causes the current thread to wait until the latch has counted down to
* zero, unless the thread is {@linkplain Thread#interrupt interrupted}.
*
* <p>If the current count is zero then this method returns immediately.
*
* <p>If the current count is greater than zero then the current
* thread becomes disabled for thread scheduling purposes and lies
* dormant until one of two things happen:
* <ul>
* <li>The count reaches zero due to invocations of the
* {@link #countDown} method; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread.
* </ul>
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* @throws InterruptedException if the current thread is interrupted
* while waiting
*/
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
/**
* Causes the current thread to wait until the latch has counted down to
* zero, unless the thread is {@linkplain Thread#interrupt interrupted},
* or the specified waiting time elapses.
*
* <p>If the current count is zero then this method returns immediately
* with the value {@code true}.
*
* <p>If the current count is greater than zero then the current
* thread becomes disabled for thread scheduling purposes and lies
* dormant until one of three things happen:
* <ul>
* <li>The count reaches zero due to invocations of the
* {@link #countDown} method; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
* <li>The specified waiting time elapses.
* </ul>
*
* <p>If the count reaches zero then the method returns with the
* value {@code true}.
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* <p>If the specified waiting time elapses then the value {@code false}
* is returned. If the time is less than or equal to zero, the method
* will not wait at all.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the {@code timeout} argument
* @return {@code true} if the count reached zero and {@code false}
* if the waiting time elapsed before the count reached zero
* @throws InterruptedException if the current thread is interrupted
* while waiting
*/
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
两个方法都是让线程等待,第一个没有时间限制,第二个有时间限制。
(1)await,主要是acquireSharedInterruptibly方法实现的,继续跟进去看看。
/**
* Acquires in shared mode, aborting if interrupted. Implemented
* by first checking interrupt status, then invoking at least once
* {@link #tryAcquireShared}, returning on success. Otherwise the
* thread is queued, possibly repeatedly blocking and unblocking,
* invoking {@link #tryAcquireShared} until success or the thread
* is interrupted.
* @param arg the acquire argument.
* This value is conveyed to {@link #tryAcquireShared} but is
* otherwise uninterpreted and can represent anything
* you like.
* @throws InterruptedException if the current thread is interrupted
*/
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
这里有两个if语句,第一个判断是被中断,如果中断了,那就抛出中断异常,然后判断当前是否还有线程未执行,如果有那就执行doAcquireSharedInterruptibly方法继续等待
/**
* Attempts to acquire in shared mode. This method should query if
* the state of the object permits it to be acquired in the shared
* mode, and if so to acquire it.
*
* <p>This method is always invoked by the thread performing
* acquire. If this method reports failure, the acquire method
* may queue the thread, if it is not already queued, until it is
* signalled by a release from some other thread.
*
* <p>The default implementation throws {@link
* UnsupportedOperationException}.
*
* @param arg the acquire argument. This value is always the one
* passed to an acquire method, or is the value saved on entry
* to a condition wait. The value is otherwise uninterpreted
* and can represent anything you like.
* @return a negative value on failure; zero if acquisition in shared
* mode succeeded but no subsequent shared-mode acquire can
* succeed; and a positive value if acquisition in shared
* mode succeeded and subsequent shared-mode acquires might
* also succeed, in which case a subsequent waiting thread
* must check availability. (Support for three different
* return values enables this method to be used in contexts
* where acquires only sometimes act exclusively.) Upon
* success, this object has been acquired.
* @throws IllegalMonitorStateException if acquiring would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if shared mode is not supported
*/
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
这是AQS里面的方法,arg在这里调用的是1,表示countDown是否减少到了0,如果到0了,那说明满足了要求,返回1,不再等待,如果没有达到0,说明还有线程未执行,必须要等到所有的线程,执行结束才可以,返回-1,此时小于0,执行doAcquireSharedInterruptibly方法
/**
* Acquires in shared interruptible mode.
* @param arg the acquire argument
*/
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
用一个一个的节点将线程串起来,等达到条件后再一个一个的唤醒,核心就是第三行的addWaiter函数。
/**
* Creates and enqueues node for current thread and given mode.
*
* @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
* @return the new node
*/
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
使用了CAS机制,使用链表串起来的。
(2)await(long timeout,TimeUnit unit)
/**
* Causes the current thread to wait until the latch has counted down to
* zero, unless the thread is {@linkplain Thread#interrupt interrupted},
* or the specified waiting time elapses.
*
* <p>If the current count is zero then this method returns immediately
* with the value {@code true}.
*
* <p>If the current count is greater than zero then the current
* thread becomes disabled for thread scheduling purposes and lies
* dormant until one of three things happen:
* <ul>
* <li>The count reaches zero due to invocations of the
* {@link #countDown} method; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
* <li>The specified waiting time elapses.
* </ul>
*
* <p>If the count reaches zero then the method returns with the
* value {@code true}.
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* <p>If the specified waiting time elapses then the value {@code false}
* is returned. If the time is less than or equal to zero, the method
* will not wait at all.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the {@code timeout} argument
* @return {@code true} if the count reached zero and {@code false}
* if the waiting time elapsed before the count reached zero
* @throws InterruptedException if the current thread is interrupted
* while waiting
*/
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
等待指定的时间,如果还没有线程执行完,那就接着执行,其底层是通过Sync的tryAcquireSharedNanos方法实现的
/**
* Attempts to acquire in shared mode, aborting if interrupted, and
* failing if the given timeout elapses. Implemented by first
* checking interrupt status, then invoking at least once {@link
* #tryAcquireShared}, returning on success. Otherwise, the
* thread is queued, possibly repeatedly blocking and unblocking,
* invoking {@link #tryAcquireShared} until success or the thread
* is interrupted or the timeout elapses.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquireShared} but is otherwise uninterpreted
* and can represent anything you like.
* @param nanosTimeout the maximum number of nanoseconds to wait
* @return {@code true} if acquired; {@code false} if timed out
* @throws InterruptedException if the current thread is interrupted
*/
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquireShared(arg) >= 0 ||
doAcquireSharedNanos(arg, nanosTimeout);
}
实现的就是doAcquireSharedNanos方法,tryAcquireShared方法主要判断是否当前满足wait的条件
/**
* Acquires in shared timed mode.
*
* @param arg the acquire argument
* @param nanosTimeout max wait time
* @return {@code true} if acquired
*/
private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return true;
}
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
如果当前还有线程未执行而且过了超时时间,那就直接执行等待线程就好,不再等了。
对于CountDownLatch来说原理主要还是通过源码来认识。不过CountDownLatch看起来虽然很好用,也有很多不足之处,比如说CountDownLatch是一次性的 , 计数器的值只能在构造方法中初始化一次 , 之后没有任何机制再次对其设置值,当CountDownLatch使用完毕后 , 它不能再次被使用。 CountDownLatch 的计数器是线程安全的,多个线程可以同时调用 countDown() 方法,而不会产生冲突。CountDownLatch 可以与其他同步工具(如 Semaphore、CyclicBarrier)结合使用,实现更复杂的多线程同步。
5、应用场景
某个线程需要再其他多个线程执行完毕后再向下执行,启动多个线程并发执行任务,等待所有线程执行完毕后进行结果汇总
多个线程并执行同一个任务,提高响应速度,有效提升多线程任务的执行效率,同时也能够降低多线程任务的复杂度和出错率
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!