5、Grounded Segement Anything

2023-12-13 16:39:42

github

sam安装与基本使用

stable diffusion安装与基本使用

安装GroundingDINO

git clone https://github.com/IDEA-Research/GroundingDINO.git
cd GroundingDINO
pip install -e .
pip install diffusers transformers accelerate scipy safetensors

安装RAM&Tag2Text

git clone https://github.com/xinyu1205/recognize-anything.git
pip install -r ./recognize-anything/requirements.txt
pip install -e ./recognize-anything/

安装OSX

git submodule update --init --recursive
cd grounded-sam-osx && bash install.sh

导入依赖

import os, sys
import argparse
import copy

from IPython.display import display
from PIL import Image, ImageDraw, ImageFont
from torchvision.ops import box_convert

# Grounding DINO
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util import box_ops
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from groundingdino.util.inference import annotate, load_image, predict

import supervision as sv

# segment anything
from segment_anything import build_sam, SamPredictor
import cv2
import numpy as np
import matplotlib.pyplot as plt

# diffusers
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline

from huggingface_hub import hf_hub_download

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

模型初始化

Load Grounding DINO model
权重

"""
Load Grounding DINO model
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
ckpt_config_filename = "GroundingDINO_SwinB.cfg.py"

could download from : https://huggingface.co/ShilongLiu/GroundingDINO/tree/main
"""
def load_grounding(repo_id, filename, ckpt_config_filename, is_path=False, device='cpu'):
    if is_path:
        cache_file = filename
        cache_config_file = ckpt_config_filename
    else:
        cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
        cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename)

    args = SLConfig.fromfile(cache_config_file)
    model = build_model(args)
    args.device = device

    checkpoint = torch.load(cache_file, map_location='cpu')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model


if __name__ == '__main__':
    ckpt_repo_id = "ShilongLiu/GroundingDINO"
    ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
    ckpt_config_filename = "GroundingDINO_SwinB.cfg.py"
    groundingdino_model = load_grounding(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename)

Load SAM model
权重

def load_sam(model_type="vit_h", sam_checkpoint="/devdata/chengan/SAM_checkpoint/sam_vit_h_4b8939.pth", device="cuda"):
    # sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
    # sam.to(device=device)

    sam = build_sam(checkpoint=sam_checkpoint)
    sam.to(device=device)

    sam_predictor = SamPredictor(sam)
    return sam_predictor

Load stable diffusion inpainting models

def load_diffusion_inpaint(device="cuda"):
    sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
        "stabilityai/stable-diffusion-2-inpainting",
        torch_dtype=torch.float16,
    ).to(device)
    return sd_pipe

基本使用

grounding samples use

def grounding_sample(text_prompt, image_path, box_treshold=0.3, text_treshold=0.25):
    ckpt_repo_id = "ShilongLiu/GroundingDINO"
    ckpt_filenmae = "/devdata/chengan/GSAM_checkpoint/groundingino/groundingdino_swinb_cogcoor.pth"
    ckpt_config_filename = "/devdata/chengan/GSAM_checkpoint/groundingino/GroundingDINO_SwinB.cfg.py"
    groundingdino_model = load_grounding(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename, is_path=True)

    image_source, image = load_image(image_path)

    boxes, logits, phrases = predict(
        model=groundingdino_model,
        image=image,
        caption=text_prompt,
        box_threshold=box_treshold,
        text_threshold=text_treshold
    )

    annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
    annotated_frame = annotated_frame[..., ::-1]  # BGR to RGB

    plt.imshow(image_source)
    plt.show()

    plt.imshow(annotated_frame)
    plt.show()

grounding_sample(text_prompt="huskie", image_path="../data/headImage.png")

在这里插入图片描述

检测 分割 替换


# Grounding DINO for detection
# detect object using grounding DINO
def detect(image, image_source, text_prompt, model, box_threshold=0.3, text_threshold=0.25):
    boxes, logits, phrases = predict(
        model=model,
        image=image,
        caption=text_prompt,
        box_threshold=box_threshold,
        text_threshold=text_threshold
    )

    annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
    annotated_frame = annotated_frame[..., ::-1]  # BGR to RGB
    return annotated_frame, boxes


# SAM for segmentation
def segment(image, sam_model, boxes):
    sam_model.set_image(image)
    H, W, _ = image.shape
    boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])

    transformed_boxes = sam_model.transform.apply_boxes_torch(boxes_xyxy.to(device), image.shape[:2])
    masks, _, _ = sam_model.predict_torch(
        point_coords=None,
        point_labels=None,
        boxes=transformed_boxes,
        multimask_output=False,
    )
    return masks.cpu()


def draw_mask(mask, image, random_color=True):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.8])], axis=0)
    else:
        color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)

    annotated_frame_pil = Image.fromarray(image).convert("RGBA")
    mask_image_pil = Image.fromarray((mask_image.cpu().numpy() * 255).astype(np.uint8)).convert("RGBA")

    return np.array(Image.alpha_composite(annotated_frame_pil, mask_image_pil))


def generate_image(image, mask, prompt, negative_prompt, pipe, seed):
    # resize for inpainting
    w, h = image.size
    in_image = image.resize((512, 512))
    in_mask = mask.resize((512, 512))

    generator = torch.Generator(device).manual_seed(seed)

    result = pipe(image=in_image, mask_image=in_mask, prompt=prompt, negative_prompt=negative_prompt,
                  generator=generator)
    result = result.images[0]

    return result.resize((w, h))


if __name__ == '__main__':
    # image
    image_path = "../data/headImage.png"
    image_source, image = load_image(image_path)
    plt.imshow(image_source)
    plt.show()

    # sam
    sam_checkpoint = '/devdata/chengan/SAM_checkpoint/sam_vit_h_4b8939.pth'
    sam_predictor = load_sam(sam_checkpoint=sam_checkpoint, device=device)

    # grounding
    ckpt_repo_id = "ShilongLiu/GroundingDINO"
    ckpt_filenmae = "/devdata/chengan/GSAM_checkpoint/groundingino/groundingdino_swinb_cogcoor.pth"
    ckpt_config_filename = "/devdata/chengan/GSAM_checkpoint/groundingino/GroundingDINO_SwinB.cfg.py"
    groundingdino_model = load_grounding(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename, is_path=True, device=device)

    # diffusion inpaint
    sd_pipe = load_diffusion_inpaint(device=device)

    # get detect box
    text_prompt = "huskie"
    annotated_frame, detected_boxes = detect(image, image_source, text_prompt=text_prompt, model=groundingdino_model)
    plt.imshow(annotated_frame)
    plt.show()

    # sam
    segmented_frame_masks = segment(image_source, sam_predictor, boxes=detected_boxes)
    annotated_frame_with_mask = draw_mask(segmented_frame_masks[0][0], annotated_frame)
    plt.imshow(annotated_frame_with_mask)
    plt.show()

    #
    mask = segmented_frame_masks[0][0].cpu().numpy()
    inverted_mask = ((1 - mask) * 255).astype(np.uint8)

    image_source_pil = Image.fromarray(image_source)
    image_mask_pil = Image.fromarray(mask)
    inverted_image_mask_pil = Image.fromarray(inverted_mask)

    plt.imshow(inverted_image_mask_pil)
    plt.show()

    prompt = "A lovely cat"
    negative_prompt = "low resolution, ugly"
    seed = 32  # for reproducibility

    generated_image = generate_image(image=image_source_pil, mask=image_mask_pil, prompt=prompt,
                                     negative_prompt=negative_prompt, pipe=sd_pipe, seed=seed)
    plt.imshow(generated_image)
    plt.show()

在这里插入图片描述

语义分割

sam_hq_checkpoint

import argparse
import os

import numpy as np
import json
import torch
import torchvision
from PIL import Image
# import litellm

# Grounding DINO
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

# segment anything
from segment_anything import (
    build_sam,
    # build_sam_hq,
    SamPredictor
)
import cv2
import numpy as np
import matplotlib.pyplot as plt

# Recognize Anything Model & Tag2Text
from ram.models import ram
from ram import inference_ram
import torchvision.transforms as TS

from huggingface_hub import hf_hub_download

# ChatGPT or nltk is required when using tags_chineses
# import openai
# import nltk
def load_image(image_path):
    # load image
    image_pil = Image.open(image_path).convert("RGB")  # load image

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image_pil, image


def check_tags_chinese(tags_chinese, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
    object_list = [obj.split('(')[0] for obj in pred_phrases]
    object_num = []
    for obj in set(object_list):
        object_num.append(f'{object_list.count(obj)} {obj}')
    object_num = ', '.join(object_num)
    print(f"Correct object number: {object_num}")

    if openai_key:
        prompt = [
            {
                'role': 'system',
                'content': 'Revise the number in the tags_chinese if it is wrong. ' + \
                           f'tags_chinese: {tags_chinese}. ' + \
                           f'True object number: {object_num}. ' + \
                           'Only give the revised tags_chinese: '
            }
        ]
        response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
        reply = response['choices'][0]['message']['content']
        # sometimes return with "tags_chinese: xxx, xxx, xxx"
        tags_chinese = reply.split(':')[-1].strip()
    return tags_chinese


def load_grounding(filename, ckpt_config_filename, repo_id="ShilongLiu/GroundingDINO", is_path=False, device='cpu'):
    if is_path:
        cache_file = filename
        cache_config_file = ckpt_config_filename
    else:
        cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
        cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename)

    args = SLConfig.fromfile(cache_config_file)
    model = build_model(args)
    args.device = device

    checkpoint = torch.load(cache_file, map_location='cpu')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model


def get_grounding_output(model, image, caption, box_threshold, text_threshold, device="cpu"):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."
    model = model.to(device)
    image = image.to(device)
    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    scores = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
        pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
        scores.append(logit.max().item())

    return boxes_filt, torch.Tensor(scores), pred_phrases


def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)


def show_box(box, ax, label):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
    ax.text(x0, y0, label)


def save_mask_data(output_dir, tags_chinese, mask_list, box_list, label_list):
    value = 0  # 0 for background

    mask_img = torch.zeros(mask_list.shape[-2:])
    for idx, mask in enumerate(mask_list):
        mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
    plt.figure(figsize=(10, 10))
    plt.imshow(mask_img.numpy())
    plt.axis('off')
    plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)

    json_data = {
        'tags_chinese': tags_chinese,
        'mask': [{
            'value': value,
            'label': 'background'
        }]
    }
    for label, box in zip(label_list, box_list):
        value += 1
        name, logit = label.split('(')
        logit = logit[:-1]  # the last is ')'
        json_data['mask'].append({
            'value': value,
            'label': name,
            'logit': float(logit),
            'box': box.numpy().tolist(),
        })
    with open(os.path.join(output_dir, 'label.json'), 'w') as f:
        json.dump(json_data, f)


if __name__ == "__main__":

    parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
    parser.add_argument("--config", type=str, required=True, help="path to config file")
    parser.add_argument(
        "--ram_checkpoint", type=str, required=True, help="path to checkpoint file"
    )
    parser.add_argument(
        "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
    )
    parser.add_argument(
        "--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
    )
    parser.add_argument(
        "--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file"
    )
    parser.add_argument(
        "--use_sam_hq", action="store_true", help="using sam-hq for prediction"
    )
    parser.add_argument("--input_image", type=str, required=True, help="path to image file")
    parser.add_argument("--split", default=",", type=str, help="split for text prompt")
    parser.add_argument("--openai_key", type=str, help="key for chatgpt")
    parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
    parser.add_argument(
        "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
    )

    parser.add_argument("--box_threshold", type=float, default=0.25, help="box threshold")
    parser.add_argument("--text_threshold", type=float, default=0.2, help="text threshold")
    parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")

    parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
    args = parser.parse_args()

    # cfg
    config_file = args.config  # change the path of the model config file
    ram_checkpoint = args.ram_checkpoint  # change the path of the model
    grounded_checkpoint = args.grounded_checkpoint  # change the path of the model
    sam_checkpoint = args.sam_checkpoint
    sam_hq_checkpoint = args.sam_hq_checkpoint
    use_sam_hq = args.use_sam_hq
    image_path = args.input_image
    split = args.split
    openai_key = args.openai_key
    openai_proxy = args.openai_proxy
    output_dir = args.output_dir
    box_threshold = args.box_threshold
    text_threshold = args.text_threshold
    iou_threshold = args.iou_threshold
    device = args.device

    # ChatGPT or nltk is required when using tags_chineses
    # openai.api_key = openai_key
    # if openai_proxy:
    # openai.proxy = {"http": openai_proxy, "https": openai_proxy}

    # make dir
    os.makedirs(output_dir, exist_ok=True)
    # load image
    image_pil, image = load_image(image_path)

    plt.imshow(image_pil)
    plt.show()

    # load grounding model
    groundingding_model = load_grounding(grounded_checkpoint, config_file, is_path=True)

    # visualize raw image
    image_pil.save(os.path.join(output_dir, "raw_image.jpg"))

    # initialize Recognize Anything Model
    normalize = TS.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    transform = TS.Compose([
        TS.Resize((384, 384)),
        TS.ToTensor(), normalize
    ])

    # load model
    # https://recognize-anything.github.io
    ram_model = ram(pretrained=ram_checkpoint,
                    image_size=384,
                    vit='swin_l')
    # threshold for tagging
    # we reduce the threshold to obtain more tags
    ram_model.eval()

    ram_model = ram_model.to(device)
    raw_image = image_pil.resize(
        (384, 384))
    raw_image = transform(raw_image).unsqueeze(0).to(device)

    res = inference_ram(raw_image, ram_model)

    # Currently ", " is better for detecting single tags
    # while ". " is a little worse in some case
    tags = res[0].replace(' |', ',')
    tags_chinese = res[1].replace(' |', ',')

    print("Image Tags: ", res[0])
    print("图像标签: ", res[1])

    # run grounding dino model
    boxes_filt, scores, pred_phrases = get_grounding_output(
        groundingding_model, image, tags, box_threshold, text_threshold, device=device
    )

    # initialize SAM
    if use_sam_hq:
        print("Initialize SAM-HQ Predictor")
        # predictor = SamPredictor(build_sam_hq(checkpoint=sam_hq_checkpoint).to(device))
    else:
        predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    predictor.set_image(image)

    size = image_pil.size
    H, W = size[1], size[0]
    for i in range(boxes_filt.size(0)):
        boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
        boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
        boxes_filt[i][2:] += boxes_filt[i][:2]

    boxes_filt = boxes_filt.cpu()
    # use NMS to handle overlapped boxes
    print(f"Before NMS: {boxes_filt.shape[0]} boxes")
    nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
    boxes_filt = boxes_filt[nms_idx]
    pred_phrases = [pred_phrases[idx] for idx in nms_idx]
    print(f"After NMS: {boxes_filt.shape[0]} boxes")
    tags_chinese = check_tags_chinese(tags_chinese, pred_phrases)
    print(f"Revise tags_chinese with number: {tags_chinese}")

    transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)

    masks, _, _ = predictor.predict_torch(
        point_coords=None,
        point_labels=None,
        boxes=transformed_boxes.to(device),
        multimask_output=False,
    )

    # draw output image
    plt.figure(figsize=(10, 10))
    plt.imshow(image)
    for mask in masks:
        show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
    for box, label in zip(boxes_filt, pred_phrases):
        show_box(box.numpy(), plt.gca(), label)

    # plt.title('RAM-tags' + tags + '\n' + 'RAM-tags_chineseing: ' + tags_chinese + '\n')
    plt.axis('off')
    plt.show()
    plt.savefig(
        os.path.join(output_dir, "automatic_label_output.jpg"),
        bbox_inches="tight", dpi=300, pad_inches=0.0
    )

    save_mask_data(output_dir, tags_chinese, masks, boxes_filt, pred_phrases)

--config
/devdata/chengan/GSAM_checkpoint/groundingino/GroundingDINO_SwinB.cfg.py
--grounded_checkpoint
/devdata/chengan/GSAM_checkpoint/groundingino/groundingdino_swinb_cogcoor.pth
--sam_checkpoint
/devdata/chengan/SAM_checkpoint/sam_vit_h_4b8939.pth
--ram_checkpoint
/devdata/chengan/GSAM_checkpoint/ram/ram_swin_large_14m.pth
--input_image
../data/headImage.png
--output_dir
"outputs"
--box_threshold
0.3
--text_threshold
0.25
--device
"cuda"

在这里插入图片描述

文章来源:https://blog.csdn.net/weixin_50973728/article/details/134935589
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。