C#,数值计算,求平方根之巴比伦算法(Babylonian algorithm)的源代码

2024-01-08 06:14:44

平方根的巴比伦算法。

1 巴比伦算法介绍一

巴比伦算法可能算是最早的用于计算$sqrt{S}$的算法之一,因为其可以用牛顿法导出,因此在很多地方也被成为牛顿法。其核心思想在于为了计算x的平方根,可以从某个任意的猜测值g开始计算。在真实的运算中,我们往往将g直接设置为x,不过也可以选择其他任何的正数值。那么其计算的迭代过程为:

1.如果猜测值g已经足够接近于正确的平方根,算法结束,函数将g作为结果返回。

2.如果猜测值g不够精确,那么使用gx/g的平均值作为新的猜测值。因为这两个值中的一个小于确切的平方根,另一个则大于确切的平方根,选择平均值有助于你得到一个更接近于正确答案的值。

3.把新的猜测值赋予给变量g,重复第一步的判断。

2 巴比伦算法介绍二

1.????假设要求a的平方根,先找到一个近似值x0,如a/2;

2.????被开方数a除以近似值x0;

3.????求第一步和第二步得到的值的平均数;

4.????令平均数为新的近似值,返回第二步,循环计算(根据精度要求,进行循环控制)

经过前面四个步骤,可以得到如上公式;

对公式的理解:可以把xn理解为x0,xn+1理解为x1,然后套用公式即可。

3 核心代码

/// <summary>
/// 计算 v 的平方根
/// 据说来自于远古巴比伦时代的算法
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
public static double Sqrt(double v)
{
?? ?const double e = 0.000001;
?? ?double x = v;
?? ?double y = 1.0;
?? ?while ((x - y) > e)
?? ?{
?? ??? ?x = (x + y) / 2;
?? ??? ?y = v / x;
?? ?}
?? ?return x;
}
?

---------------------------------------------
POWER BY TRUFFER.CN

文章来源:https://blog.csdn.net/beijinghorn/article/details/123936100
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。