vue.js调用python测接口,实现响应式的输出代码

2023-12-23 18:20:09

python 代码

async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
                              knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
                              top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
                              score_threshold: float = Body(
                                  SCORE_THRESHOLD,
                                  description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右",
                                  ge=0,
                                  le=2
                              ),
                              history: List[History] = Body(
                                  [],
                                  description="历史对话",
                                  examples=[[
                                      {"role": "user",
                                       "content": "我们来玩成语接龙,我先来,生龙活虎"},
                                      {"role": "assistant",
                                       "content": "虎头虎脑"}]]
                              ),
                              stream: bool = Body(False, description="流式输出"),
                              model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
                              temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
                              max_tokens: Optional[int] = Body(
                                  None,
                                  description="限制LLM生成Token数量,默认None代表模型最大值"
                              ),
                              prompt_name: str = Body(
                                  "default",
                                  description="使用的prompt模板名称(在configs/prompt_config.py中配置)"
                              ),
                              request: Request = None,
                              ):
    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")

    history = [History.from_data(h) for h in history]

    async def knowledge_base_chat_iterator(
            query: str,
            top_k: int,
            history: Optional[List[History]],
            model_name: str = LLM_MODELS[0],
            prompt_name: str = prompt_name,
    ) -> AsyncIterable[str]:
        nonlocal max_tokens
        callback = AsyncIteratorCallbackHandler()
        if isinstance(max_tokens, int) and max_tokens <= 0:
            max_tokens = None

        model = get_ChatOpenAI(
            model_name=model_name,
            temperature=temperature,
            max_tokens=max_tokens,
            callbacks=[callback],
        )
        docs = search_docs(query, knowledge_base_name, top_k, score_threshold)
        context = "\n".join([doc.page_content for doc in docs])
        if len(docs) == 0:  # 如果没有找到相关文档,使用empty模板
            prompt_template = get_prompt_template("knowledge_base_chat", "empty")
        else:
            prompt_template = get_prompt_template("knowledge_base_chat", prompt_name)
        input_msg = History(role="user", content=prompt_template).to_msg_template(False)
        chat_prompt = ChatPromptTemplate.from_messages(
            [i.to_msg_template() for i in history] + [input_msg])

        chain = LLMChain(prompt=chat_prompt, llm=model)

        # Begin a task that runs in the background.
        task = asyncio.create_task(wrap_done(
            chain.acall({"context": context, "question": query}),
            callback.done),
        )

        source_documents = []
        for doc in docs:
            text = doc.page_content.rstrip(' [链接]:\n') + '\n'
            if text not in source_documents:
                source_documents.append(text)

        if len(source_documents) == 0:  # 没有找到相关文档
            source_documents = []

        if stream:
            async for token in callback.aiter():
                # Use server-sent-events to stream the response
                print(f"answer:{token}")
                yield json.dumps({"answer": token}, ensure_ascii=False)
            yield json.dumps({"docs": source_documents}, ensure_ascii=False)
        else:
            answer = ""
            async for token in callback.aiter():
                answer += token
            yield json.dumps({"answer": answer,
                              "docs": source_documents},
                             ensure_ascii=False)
        await task

    return StreamingResponse(knowledge_base_chat_iterator(query=query,
                                                          top_k=top_k,
                                                          history=history,
                                                          model_name=model_name,
                                                          prompt_name=prompt_name),
                             media_type="text/event-stream")

vue.js 代码

<template>
  <div>
    <h2>Streamed Responses:</h2>
    <div v-for="(message, index) in messages" :key="index">{{ message }}</div>
  </div>
</template>

<script>
import {TRUE} from "sass";

export default {
  data() {
    return {
      messages: [],
      reader: null, // 用于存储流的阅读器
    };
  },
  mounted() {
    this.postDataAndStreamResponse();
  },
  beforeUnmount() {
    if (this.reader) {
      this.reader.cancel(); // 组件销毁时取消流阅读
    }
  },
  methods: {
    async postDataAndStreamResponse() {
      try {
        const response = await fetch('http://XXXXX/chat/knowledge_base_chat', {
          method: 'POST',
          headers: {
            'Content-Type': 'application/json',
            'Accept': 'text/event-stream',
          },
          body: JSON.stringify({
            "query": "怎么打官司",
            "knowledge_base_name": "samples",
            "top_k": 5,
            "score_threshold": 0.5,
            "history": [{
              "role": "user",
              "content": "我们来玩成语接龙,我先来,生龙活虎"
            }, {
              "role": "assistant",
              "content": "虎头虎脑"
            }],
            "stream": true,
            "model_name": "qwen-api",
            "temperature": 0.5,
            "max_tokens": 1000,
            "prompt_name": "default"
          })
        });

        this.reader = response.body.getReader();
        this.readStream();
      } catch (error) {
        console.error('Stream fetch error:', error);
        // 这里可以添加用户友好的错误处理
      }
    },
    async readStream() {
      try {
        const decoder = new TextDecoder();
        while (TRUE) { // 使用循环而非递归
          const { value, done } = await this.reader.read();
          if (done) break; // 如果没有更多数据,则退出循环

          const text = decoder.decode(value, { stream: true });
          this.messages.push(text);
        }
      } catch (error) {
        console.error('Stream read error:', error);
        // 这里可以添加用户友好的错误处理
      }
    },
  },
};
</script>

文章来源:https://blog.csdn.net/sunyuhua_keyboard/article/details/135167930
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。