【阅读笔记】LoRAHub:Efficient Cross-Task Generalization via Dynamic LoRA Composition

2023-12-28 10:46:55

一、论文信息

1 论文标题

LoRAHub:Efficient Cross-Task Generalization via Dynamic LoRA Composition

2 发表刊物

NIPS2023_WorkShop

3 作者团队

Sea AI Lab, Singapore

4 关键词

LLMs、LoRA

二、文章结构

LoRAHub
Introduction
Problem Statement
Methodology
LoRA Tuning on Upstream Tasks
Compose: Element-wise Composition of LoRA modules
Adapt: Weight Optimization via Gradient-free Methods
Evaluation
Experimental Framework
Implementation details
Main Results
Analysis
Related Work
Conclusion

1 引言

1.1 研究动机

Investigation into the inherent modularity and composability of LoRA modules. To verify is it feasbile to compose LoRA modules for efficiently generalizing towards unseen tasks?

1.2 任务背景

Intro-P1:
LLM->issues->LoRA->efficiency->inherent modularity and composability

Intro-P2:
generalization of LoRA->automatic assembling without human design->few-shot->auto orchestrate->LoRAHub、LoRAHub Learning

Intro-P3:
Experiments:Flan-T5->BBH benchmark->与few-shot ICL相比效果相当->减少了推理时间->gradient free减少计算开销

Intro-P4:
can work on CPU-only machine->LoRA modules can share, access, apply and reuse

1.3 问题陈述

LLM

  • pre-trained Transformer / have been fine-tuned with instruction-following datasets
  • encoder-decoder / decoder-only

Cross-Task Generalization

  • zero-shot learing
  • few-shot learing
    当新任务的含标签数据太少时,直接fine-tune效率和效果都不能保证。理想的方式是直接让模型能够基于这少部分数据直接适应新任务场景。

LoRA Tuning

traditional LoRA methods primarily concentrate on training and testing within the same tasks, rather than venturing into few-shot cross-task generalization.

2 创新方法

模型结构图

LoraHub learning

  • Compose Stage:
    existing LoRA modules are integrated into one unified module, employing a set of weights, denoted as w w w, as coefficients. 【加权合并】
  • Adapt Stage:
    the amalgamated (合并的) LoRA module is evaluated on a few examples from the unseen task.

Subsequently, a gradient-free algorithm is applied to refine w. After executing K iterations, a highly adapted LoRA module is produced, which can be incorporated with the LLM to perform the intended task.

Gradient-free methodology

  • Shiwa:CMA-ES (Covariance Matrix Adaptive Evolution Strategies)
  • For our case, we deploy this algorithm to shape the search space of w, and eventually select the best weights based on their performance on the few-shot examples from the unseen task.

其它

文章来源:https://blog.csdn.net/weixin_45225032/article/details/135256157
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。