【数据结构】二叉树的构建(C语言实现)
1.树概念及结构
1.1树的概念?
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
- 有一个特殊的结点,称为根结点,根节点没有前驱结点
- 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1**、T2、……、**Tm,其中每一个集合Ti(1<= i
<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继 - 因此,树是递归定义的
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
1.2树的相关概念
??
?
节点的度:个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林
概念很多,还是要我们一一了解的!
1.3树得表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
1.4树的实际应用 (表示文件系统的目录树结构,网上查找的图片)
?
2.二叉树概念及结构
2.1相关概念
一棵二叉树是结点的一个有限集合:
1.或者为空
2.由一个根节点加上两棵别称为左子树和右子树的二叉树组成
- 二叉树不存在度大于2的结点
- 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
?注意:对于任意的二叉树都是由以下几种情况复合而成的:
?2.2特殊的二叉树:
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
关看概念是不好理解的,上图
?2.3二叉树的性质
若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^(h-1)
对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2,则有n0 =n2 +1
若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=long(n+1) . (ps:是log以2为底,n+1为对数)
对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有 :
1.若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2.若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3.若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
?
了解二叉树的性质后,我们不妨上手几道题
1.某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
答案:B。n0 = n2+1,既n0=199+1 = 200
2.下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B 堆
C 队列
D 栈
答案:A。
3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
答案:A。总结点数n = n0+n1+n2;又n2 = n0-1,既n=n0+n1+n0-1,在完全二叉树中,n1只有0个或者1个,代入选A
4.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12
答案:B
5.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
答案:B。类似于第3题,总结点n = n0+n1+n0-1;n1为0或者1,代入能整除的选B
2.4二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
1. 顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。
?2.链式结构
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是 链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所 在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程 学到高阶数据结构如红黑树等会用到三叉链。
3.二叉树的顺序结构及实现
3.1 二叉树的顺序结构
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
?4.二叉树链式结构的实现
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。为了降低大家学习成本,此处手动快速创建一棵简单的二叉树。
这棵树的代码实现:
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
BTDataType data;
struct BinaryTreeNode* left;
struct BinaryTreeNode* right;
}BTNode;
BTNode* CreatTree()
{
BTNode* n1 = (BTNode*)malloc(sizeof(BTNode));
assert(n1);
BTNode* n2 = (BTNode*)malloc(sizeof(BTNode));
assert(n2);
BTNode* n3 = (BTNode*)malloc(sizeof(BTNode));
assert(n3);
BTNode* n4 = (BTNode*)malloc(sizeof(BTNode));
assert(n4);
BTNode* n5 = (BTNode*)malloc(sizeof(BTNode));
assert(n5);
BTNode* n6 = (BTNode*)malloc(sizeof(BTNode));
assert(n6);
n1->data = 1;
n2->data = 2;
n3->data = 3;
n4->data = 4;
n5->data = 5;
n6->data = 6;
n1->left = n2;
n1->right = n4;
n2->left = n3;
n2->right = NULL;
n3->left = NULL;
n3->right = NULL;
n4->left = n5;
n4->right = n6;
n5->left = NULL;
n5->right = NULL;
n6->left = NULL;
n6->right = NULL;
return n1;
}
?搭建好框架,我们进行下一步操作
4.1层序遍历
先序、中序、后序遍历递归操作:
//先序
void PreOrder(BTNode* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
printf("%d ", root->data);
PreOrder(root->left);
PreOrder(root->right);
}
//中序
void InOrder(BTNode* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
InOrder(root->left);
printf("%d ", root->data);
InOrder(root->right);
}
//后序
void PostOrder(BTNode* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
PostOrder(root->left);
PostOrder(root->right);
printf("%d ", root->data);
}
我们发现二叉树的层序遍历好像也不难,但是深入理解我们会发现递归调用过程还是蛮复杂的,下面我们来试着理解递归调用展开图。
?
除了这三种遍历的方式,二叉树还有层序遍历:
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序
那么如何实现层序遍历呢?
我们可以借用一个队列,把结点代入队列, 不为空出队列,在把孩子带入队列,在出队列,在把孩子代入,如此往复,直到结点全部出队列,即队列为空层序遍历结束。简单来说:就是上一层结点出的时候带入下一层结点。这里用C语言实现:所以我们首先是要去手写一个队列。
//二叉树
typedef int BTDataType;
typedef struct BinaryTreeNode
{
BTDataType data;
struct BinaryTreeNode* left;
struct BinaryTreeNode* right;
}BTNode;
//队列(用链表实现,data的类型是BTNode*)
typedef BTNode* QDataType;
typedef struct QueueNode
{
struct QueueNode* next;
QDataType data;
}QNode;
typedef struct Queue
{
QNode* head;
QNode* tail;
}Queue;
void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);
void QueuePush(Queue* pq, QDataType x);
void QueuePop(Queue* pq);
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);
bool QueueEmpty(Queue* pq);
int QueueSize(Queue* pq);
void QueueInit(Queue* pq)
{
assert(pq);
pq->head = pq->tail = NULL;
}
void QueueDestroy(Queue* pq)
{
assert(pq);
QNode* cur = pq->head;
while (cur)
{
QNode* next = cur->next;
free(cur);
cur = next;
}
pq->head = pq->tail = NULL;
}
void QueuePush(Queue* pq, QDataType x)
{
assert(pq);
QNode* newnode = (QNode*)malloc(sizeof(QNode));
if (newnode == NULL)
{
printf("malloc fail\n");
exit(-1);
}
newnode->data = x;
newnode->next = NULL;
if (pq->tail == NULL)
{
pq->head = pq->tail = newnode;
}
else
{
pq->tail->next = newnode;
pq->tail = newnode;
}
}
void QueuePop(Queue* pq)
{
assert(pq);
assert(!QueueEmpty(pq));
if (pq->head->next == NULL)
{
free(pq->head);
pq->head = pq->tail = NULL;
}
else
{
QNode* next = pq->head->next;
free(pq->head);
pq->head = next;
}
}
QDataType QueueFront(Queue* pq)
{
assert(pq);
assert(!QueueEmpty(pq));
return pq->head->data;
}
QDataType QueueBack(Queue* pq)
{
assert(pq);
assert(!QueueEmpty(pq));
return pq->tail->data;
}
bool QueueEmpty(Queue* pq)
{
assert(pq);
return pq->head == NULL;
}
int QueueSize(Queue* pq)
{
assert(pq);
QNode* cur = pq->head;
int size = 0;
while (cur)
{
++size;
cur = cur->next;
}
return size;
}
//层序遍历
void TreeLevelOrder(BTNode*root)
{
Queue q;
QueueInit(&q);
if (root)
QueuePush(&q, root);
while (!QueueEmpty(&q))
{
BTNode* front = QueueFront(&q);
QueuePop(&q);
printf("%d ",front->data);
//下一层
if (front->left)
QueuePush(&q, front->left);
if (front->right)
QueuePush(&q, front->right);
}
printf("\n");
QueueDestroy(&q);
}
4.2其他操作
节点的个数
// 节点的个数
int TreeSize(BTNode* root)
{
return root == NULL ? 0 :
TreeSize(root->left) +
TreeSize(root->right) + 1;
}
叶子节点的个数
// 叶子节点个数
int TreeLeafSize(BTNode* root)
{
if (root == NULL)
return 0;
if (root->left == NULL
&& root->right == NULL)
return 1;
return TreeLeafSize(root->left)
+ TreeLeafSize(root->right);
}
?二叉树的高度
int TreeHeight(BTNode* root)
{
if (root == NULL)
return 0;
int lh = TreeHeight(root->left);
int rh = TreeHeight(root->right);
return lh > rh ? lh + 1 : rh + 1;
}
第k层节点的个数
// 第K层节点个数
int TreeKLevel(BTNode* root, int k)
{
assert(k > 0);
if (root == NULL)
return 0;
if (k == 1)
return 1;
// 转换成求子树第k-1层
return TreeKLevel(root->left, k - 1)
+ TreeKLevel(root->right, k - 1);
}
返回x所在的节点
// 返回x所在的节点
BTNode* TreeFind(BTNode* root, BTDataType x)
{
if (root == NULL)
return NULL;
if (root->data == x)
return root;
// 先去左树找
BinaryTreeNode*lret = TreeFind(root->left, x);
if (lret)
return lret;
// 左树没有找到,再到右树找
BinaryTreeNode*rret = TreeFind(root->right, x);
if (rret)
return rret;
return NULL;
}
二叉树的销毁
void BinaryTreeDestory(BTNode* root)
{
if (root == NULL)
{
return;
}
BinaryTreeDestory(root->left);
BinaryTreeDestory(root->right);
free(root);
}
通过主函数测试上面的几个函数
int main()
{
BTNode* root = CreateTree();
PreOrder(root);
printf("\n");
InOrder(root);
printf("\n");
printf("Tree size:%d\n", TreeSize(root));
printf("Tree size:%d\n", TreeSize(root));
printf("Tree size:%d\n", TreeSize(root));
printf("Tree Leaf size:%d\n", TreeLeafSize(root));
printf("Tree Height:%d\n", TreeHeight(root));
printf("Tree K Level:%d\n", TreeKLevel(root, 3));
printf("Tree Find:%p\n", TreeFind(root, 8));
BTNode* ret = TreeFind(root, 7);
ret->data *= 10;
PreOrder(root);
printf("\n");
return 0;
}
4.3判断完全二叉树
我们该怎么去判断是否为完全二叉树呢?这就可以用到我们上面说的层序遍历了:
我们一层一层地走,对于完全二叉树来说,一层一层地走,遇到空以后,后面就不会有非空了(因为完全二叉树是从左到右依次连续的),有非空的话那就不是完全二叉树了。
//判断是否为完全二叉树
bool BinaryTreeComplete(BTNode* root)
{
Queue q;
QueueInit(&q);
if (root)
QueuePush(&q, root);
while (!QueueEmpty(&q))
{
BTNode* front = QueueFront(&q);
QueuePop(&q);
if (front == NULL)
{
break;
}
QueuePush(&q, front->left);
QueuePush(&q, front->right);
}
//遇到空以后,后面全是空——完全二叉树
while (!QueueEmpty(&q))
{
BTNode* front = QueueFront(&q);
QueuePop(&q);
if (front != NULL)
{
QueueDestory(&q);
return false;
}
}
QueueDestroy(&q);
return true;
}
目录
1.4树的实际应用 (表示文件系统的目录树结构,网上查找的图片)
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!