Python获取坐标的常用方法

2023-12-13 17:01:31

一、列表

1.1、列表索引

my_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
row_index = 1
column_index = 2
value_at_index = my_list[row_index][column_index]
print(f"列表索引: 在位置 ({row_index}, {column_index}) 的值是 {value_at_index}")

# 列表索引: 在位置 (1, 2) 的值是 6

1.2、枚举索引

my_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
for row_index, row_list in enumerate(my_list):    # 使用 enumerate 遍历行
    for col_index, value in enumerate(row_list):  # 使用 enumerate 遍历列
        print(f"在位置 ({row_index}, {col_index}) 的值是 {value}")

"""
在位置 (0, 0) 的值是 1
在位置 (0, 1) 的值是 2
在位置 (0, 2) 的值是 3
在位置 (1, 0) 的值是 4
在位置 (1, 1) 的值是 5
在位置 (1, 2) 的值是 6
在位置 (2, 0) 的值是 7
在位置 (2, 1) 的值是 8
在位置 (2, 2) 的值是 9
"""

二、numpy 数组

2.1、数组索引

import numpy as np
my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
row_index = 1
column_index = 2
value_at_index = my_array[row_index, column_index]
print(f"数组索引: 在位置 ({row_index}, {column_index}) 的值是 {value_at_index}")

# 数组索引: 在位置 (1, 2) 的值是 6

2.2、乘法运算:image * mask

使用 * 操作符对图像和掩码进行逐元素的乘法运算,两者的形状必须相同。

import numpy as np
image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# mask = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]).astype(bool)  # 指定索引
mask = (image > 4)  # 条件索引
result = image * mask  # 获取image中mask对应为True的图像(其余置零)
print(result)

"""
[[0 0 0]
 [0 5 6]
 [7 8 9]]
"""

2.3、条件索引

2.3.1、np.argwhere():返回满足条件的元素的坐标(数组表示)

import numpy as np

arr = np.array([[1, 0, 3], [4, 0, 6], [7, 8, 0]])
coordinates = np.argwhere(arr != 0)
print(coordinates)

"""
[[0 0]
 [0 2]
 [1 0]
 [1 2]
 [2 0]
 [2 1]]
"""

2.3.2、np.where():返回满足条件的元素的索引(元组表示)

import numpy as np

arr = np.array([[1, 0, 3], [4, 0, 6], [7, 8, 0]])
indices = np.where(arr != 0)
coordinates = np.array(np.nonzero(arr)).T
print(indices)
print(coordinates)

"""
(array([0, 0, 1, 1, 2, 2], dtype=int64), array([0, 2, 0, 2, 0, 1], dtype=int64))
[[0 0]
 [0 2]
 [1 0]
 [1 2]
 [2 0]
 [2 1]]
"""

2.3.3、np.nonzero():返回数组中非零元素的索引(元组表示)

import numpy as np

arr = np.array([[1, 0, 3], [4, 0, 6], [7, 8, 0]])
indices = np.nonzero(arr)  # 返回数组中非零元素的索引
coordinates = np.array(np.nonzero(arr)).T  # 返回数组中非零元素的坐标
print(indices)
print(coordinates)

"""
(array([0, 0, 1, 1, 2, 2], dtype=int64), array([0, 2, 0, 2, 0, 1], dtype=int64))
[[0 0]
 [0 2]
 [1 0]
 [1 2]
 [2 0]
 [2 1]]
"""

2.3.4、np.indices():返回数组中每个维度上索引值的数组(元组表示)

import numpy as np
image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
coordinates = np.indices(image.shape)  # 获取图像所有坐标
flat_coordinates = np.vstack([coord.flatten() for coord in coordinates]).T  # 将坐标展平为一维数组(获取图像中所有像素的坐标)
print(flat_coordinates)

"""
[[0 0]
 [0 1]
 [0 2]
 [1 0]
 [1 1]
 [1 2]
 [2 0]
 [2 1]
 [2 2]]
"""

2.3.5、np.extract():提取数组中满足条件的元素并返回一维数组

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt

# 生成一个随机的图像数据
np.random.seed(42)
ImageStack = np.random.randint(0, 256, size=(10, 10), dtype=np.uint8)
threshold = 150  # 设置阈值

# 使用 np.extract 函数提取满足条件的元素
condition = ImageStack > threshold
image_extracted = np.extract(condition, ImageStack)
print("提取的元素个数", len(image_extracted))

# 恢复原图的形状
image_extracted_reshaped = np.zeros_like(ImageStack, dtype=np.uint8)
image_extracted_reshaped[condition] = image_extracted

# 显示原始图像、处理后的图像以及提取得到的元素的图像
plt.figure(figsize=(15, 5))
plt.subplot(1, 3, 1)
plt.imshow(ImageStack, cmap='gray', vmin=0, vmax=255)
plt.title('ImageStack')
plt.subplot(1, 3, 2)
plt.imshow(image_extracted_reshaped, cmap='gray', vmin=0, vmax=255)
plt.title(f'image_extracted_reshaped')
plt.subplot(1, 3, 3)
plt.plot(image_extracted, marker='o')
plt.title(f'image_extracted')
plt.show()

实战一:获取每一列的最小值:np.min(coordinates, axis=0)

import numpy as np

my_array = np.zeros((10, 10, 10))  # 随机生成0和1整数的数组
my_array[2:4, 2:3, 5:9] = 1  # 指定位置填充值
nonzero_coordinates = np.argwhere(my_array != 0)  # 获取非零元素的坐标

min_coords_nonzero = np.min(nonzero_coordinates, axis=0)  # 获取所有列中每一列的最小值(axis=0 表示沿着第一个轴(即列轴)进行操作。)
max_coords_nonzero = np.max(nonzero_coordinates, axis=0)  # 获取所有列中每一列的最大值(axis=0 表示沿着第一个轴(即列轴)进行操作。)
print("最小坐标值:", min_coords_nonzero)
print("最大坐标值:", max_coords_nonzero)

# 最小坐标值: [2 2 5]
# 最大坐标值: [3 2 8]

实战二:提取坐标(时耗优化)

import numba
import numpy as np
import time

@numba.jit()
def where(input_data, output_data):
    # output_coordinate = []
    num = 0
    for z in range(input_data.shape[0]):
        for y in range(input_data.shape[1]):
            for x in range(input_data.shape[2]):
                if input_data[z, y, x]:
                    # output_coordinate.append([z, y, x])  # 时耗增加
                    output_data[num][0] = z
                    output_data[num][1] = y
                    output_data[num][2] = x
                    num += 1
    # return output_coordinate   # 时耗增加
    return num


if __name__ == "__main__":
    np.random.seed(42)
    start_time = time.time()
    ImageStack11 = np.random.randint(0, 256, size=(1024, 1024, 2024), dtype=np.uint8)  # 生成一个随机的图像数据
    print(f"总耗时:{time.time() - start_time:.4f}秒")
    #######################################
    start_time = time.time()
    ImageStack22 = np.random.randint(0, 256, size=(1024, 1024, 2024)).astype(np.uint8)   # 生成一个随机的图像数据
    print(f"总耗时:{time.time() - start_time:.4f}秒")
    """
    总耗时:1.2737秒
    总耗时:2.8277秒
    """

    ImageStack = ImageStack11.copy()
    threshold = 50  # 设置阈值
    mask = (ImageStack < threshold)
    print("非零数量", np.count_nonzero(mask))
    ####################################################################
    start_time = time.time()
    output_data = np.zeros((ImageStack.shape[0]*ImageStack.shape[1]*ImageStack.shape[2], 3), dtype=ImageStack.dtype)  # 创建一个与 arr 具有相同形状和数据类型的全零数组
    num = where(mask, output_data)  # 找到mask的非零元素的坐标
    coordinate1 = output_data[0:num]
    print(f"总耗时:{time.time() - start_time:.4f}秒")
    ####################################################################
    start_time = time.time()
    coordinate2 = np.argwhere(mask)  # 找到mask的非零元素的坐标
    print(f"总耗时:{time.time() - start_time:.4f}秒")
    ####################################################################
    start_time = time.time()
    index3 = np.where(mask)  # (1)找到mask的非零元素的索引
    # coordinates = np.array(c1).T
    print(f"总耗时:{time.time() - start_time:.4f}秒")
    ####################################################################
    start_time = time.time()
    coordinate4 = np.array(np.where(mask)).T  # (1)找到mask的非零元素的索引(2)索引转坐标
    print(f"总耗时:{time.time() - start_time:.4f}秒")
    ####################################################################
    start_time = time.time()
    coordinate5 = np.array(np.nonzero(mask)).T  # (1)找到mask的非零元素的索引(2)索引转坐标
    print(f"总耗时:{time.time() - start_time:.4f}秒")

    """
    非零数量 209707383
    总耗时:2.1542秒     Numba加速
    总耗时:5.0483秒     np.argwhere(mask)
    总耗时:3.8276秒     np.where(mask)
    总耗时:5.1381秒     np.array(np.where(mask)).T
    总耗时:5.1958秒     np.array(np.nonzero(mask)).T
    """

####################################################################
# (2)根据条件进行索引与赋值(正方向)
ImageStack2 = ImageStack.copy()
start_time = time.time()
ImageStack2[np.where(ImageStack2 < threshold)] = 0      # (1)条件索引(2)坐标获取(3)再赋值
end_time = time.time()
runtime2 = end_time - start_time

ImageStack3 = ImageStack.copy()
start_time = time.time()
ImageStack3[ImageStack3 < threshold] = 0                # (2)条件索引(2)再赋值(速度最快,但无法获取坐标)
end_time = time.time()
runtime3 = end_time - start_time
print(f"方法二:总运行时间: {runtime2:.2f} 秒")
print(f"方法三:总运行时间: {runtime3:.2f} 秒")
"""
方法二:总运行时间: 0.56 秒
方法三:总运行时间: 0.07 秒
"""
####################################################################
# (3)根据条件进行索引与赋值(反方向)
ImageStack2 = ImageStack.copy()
start_time = time.time()
ImageStack2[np.where(ImageStack2 > threshold)] = 0      # (1)条件索引(2)坐标获取(3)再赋值
end_time = time.time()
runtime2 = end_time - start_time

ImageStack3 = ImageStack.copy()
start_time = time.time()
ImageStack3[ImageStack3 > threshold] = 0                # (2)条件索引(2)再赋值(速度最快,但无法获取坐标)
end_time = time.time()
runtime3 = end_time - start_time
print(f"方法二:总运行时间: {runtime2:.2f} 秒")
print(f"方法三:总运行时间: {runtime3:.2f} 秒")
"""
方法二:总运行时间: 0.18 秒
方法三:总运行时间: 0.07 秒
"""

实战三:数据归一化到[0, 255] + 数据类型转换为uint8

import numpy as np

np.random.seed(42)  # 设置种子点
# (1)生成一个随机的uintt16数据类型的图像[0, 65535]
ImageStack = np.random.randint(0, 65535, size=(10, 10), dtype=np.uint16)
# (2)数据归一化到[0, 255] + 数据类型转换为uint8
normalized_data = ((ImageStack - ImageStack.min()) / (ImageStack.max()- ImageStack.min()) * 255).astype(np.uint8)

print(ImageStack.min(), ImageStack.max())
print(normalized_data.min(), normalized_data.max())

# import napari
# viewer = napari.Viewer()
# viewer.add_image(ImageStack, name='ImageStack', colormap='gray')
# viewer.add_image(normalized_data, name='normalized_data', colormap='gray')
# napari.run()

文章来源:https://blog.csdn.net/shinuone/article/details/134645501
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。