朴素贝叶斯 朴素贝叶斯原理

2023-12-13 15:35:36

朴素贝叶斯 朴素贝叶斯原理

判别模型和生成模型

  • 监督学习方法又分生成方法 (Generative approach) 和判别方法 (Discriminative approach)所学到的模型分别称为生成模型 (Generative Model) 和判别模型 (Discriminative Model)。

在这里插入图片描述

朴素贝叶斯原理

  1. 朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布 P ( X , Y ) P(X,Y) P(X,Y),然后求得后验概率分布 P ( Y ∣ X ) P(Y|X) P(YX)。具体来说,利用训练数据学习 P ( X ∣ Y ) P(X|Y) P(XY) P ( Y ) P(Y) P(Y)的估计,得到联合概率分布:

    P ( X , Y ) = P ( Y ) P ( X ∣ Y ) P(X,Y)=P(Y)P(X|Y) P(X,Y)P(Y)P(XY)

    概率估计方法可以是极大似然估计或贝叶斯估计

  2. 朴素贝叶斯法的基本假设是条件独立性

    P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ? ? , X ( n ) = x ( n ) ∣ Y = c k ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) \begin{aligned} P(X&=x | Y=c_{k} )=P\left(X^{(1)}=x^{(1)}, \cdots, X^{(n)}=x^{(n)} | Y=c_{k}\right) \\ &=\prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} | Y=c_{k}\right) \end{aligned} P(X?=xY=ck?)=P(X(1)=x(1),?,X(n)=x(n)Y=ck?)=j=1n?P(X(j)=x(j)Y=ck?)?

    由于这一假设,朴素贝叶斯法的学习与预测大为简化。因而朴素贝叶斯法高效,且易于实现。其缺点是分类的性能不一定很高

  3. 朴素贝叶斯法利用贝叶斯定理与学到的联合概率模型进行分类预测。

    P ( Y ∣ X ) = P ( X , Y ) P ( X ) = P ( Y ) P ( X ∣ Y ) ∑ Y P ( Y ) P ( X ∣ Y ) P(Y | X)=\frac{P(X, Y)}{P(X)}=\frac{P(Y) P(X | Y)}{\sum_{Y} P(Y) P(X | Y)} P(YX)=P(X)P(X,Y)?=Y?P(Y)P(XY)P(Y)P(XY)? 将上述第2点的公式带入,由于各个概率的分母都是 ∑ Y P ( Y ) P ( X ∣ Y ) {\sum_{Y} P(Y)P(X | Y)} Y?P(Y)P(XY)
    所以后验概率最大的类 y y y为:
    y = arg ? max ? c k P ( Y = c k ) ∏ j = 1 n P ( X j = x ( j ) Y = c k ) y=\arg \max _{c_{k}} P\left(Y=c_{k}\right) \prod_{j=1}^{n} P\left(X_{j}=x^{(j)} Y=c_{k}\right) y=argck?max?P(Y=ck?)j=1n?P(Xj?=x(j)Y=ck?)

    后验概率最大等价于0-1损失函数时的期望风险最小化。

GaussianNB 高斯朴素贝叶斯

特征的可能性被假设为高斯

概率密度函数:
P ( x i ∣ y k ) = 1 2 π σ y k 2 e x p ( ? ( x i ? μ y k ) 2 2 σ y k 2 ) P(x_i | y_k)=\frac{1}{\sqrt{2\pi\sigma^2_{yk}}}exp(-\frac{(x_i-\mu_{yk})^2}{2\sigma^2_{yk}}) P(xi?yk?)=2πσyk2? ?1?exp(?2σyk2?(xi??μyk?)2?)

数学期望(mean): μ \mu μ

方差: σ 2 = ∑ ( X ? μ ) 2 N \sigma^2=\frac{\sum(X-\mu)^2}{N} σ2=N(X?μ)2?

文章来源:https://blog.csdn.net/2201_75381449/article/details/134884937
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。