Pix2Seq 算法阅读记录
2024-01-02 20:17:48
目录
前向传播过程
batch_preds--> tgt-->tgt=cat(tgt, padding)-->tgt_embedding
-->tgt_mask,tgt_padding_mask
以NLP的角度,tgt 代表了?词汇表的长度,encoder部分直接对图像进行处理,输出序列的patch,16倍下采样,最终输出的序列长度为576。
decoder中,根据句子的最大长度生成了掩码mask,下三角矩阵全为0.还有paddding mask,第一个为False,其余全为填充的,第一个是开始标志。
decoder的输入序列初始化 全为填充的token,为406,外加一个开始标志,因此输入的词向量嵌入都根据它初始化。
decoder的输入包括?encoder的输出序列+位置编码, 初始化的词向量嵌入, 掩码mask, padding掩码。
因为只检测一张图片,而NLP任务中需要预测一句话,可能包含多个单词。所以,输出只采用了
return self.output(preds)[:, length-1, :]
来进行预测。?
注意
NLP中的语句生成,贪心所搜,与top_k_top_p_filtering相关见这里
采用自回归方式生成预测,前向过程后生成的预测结果可视化如下
其中的404由
num_bins + class
?得出。实际离散化后包含406个标记,因为加入了开始(404)和结束(405)标记。
得到上述的网络的输出预测后,开始对这些进行处理。?
1、 得到第一个结束标志 EOS 的索引 index
2、 判断 index-1 是否是 5 的倍数,若不是,则本次的预测不进行处理,默认没有检测到任何目标
3、 去掉额外填充的噪声
4、 迭代的每次拿出5个token
5、 前4维 为 box的信息,第5维为类别信息
6、 预测的表示类别的离散化token需要减去 num_bins,才是最后的类别
7、 box 反离散化, box / (num_bins - 1), 这个是输出特征尺度下的归一化的box的坐标
8、 将box的尺度返回输入图片的尺度, box的信息为 (Xmin,Ymin,Xmax,Ymax)
训练过程:
至于文中的 各种训练的设置,包括序列增强技术,没有看到,没有仔细的看。
损失函数,文章中说用的极大似然估计,最终的形式是交叉熵损失函数。
网络结构
EncoderDecoder(
(encoder): Encoder(
(model): VisionTransformer(
(patch_embed): PatchEmbed(
(proj): Conv2d(3, 384, kernel_size=(16, 16), stride=(16, 16))
(norm): Identity()
)
(pos_drop): Dropout(p=0.0, inplace=False)
(blocks): Sequential(
(0): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(1): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(2): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(3): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(4): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(5): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(6): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(7): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(8): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(9): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(10): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
(11): Block(
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=384, out_features=1152, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU()
(drop1): Dropout(p=0.0, inplace=False)
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop2): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
)
(norm): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(fc_norm): Identity()
(head): Identity()
)
(bottleneck): AdaptiveAvgPool1d(output_size=256)
)
(decoder): Decoder(
(embedding): Embedding(407, 256)
(decoder_pos_drop): Dropout(p=0.05, inplace=False)
(decoder): TransformerDecoder(
(layers): ModuleList(
(0): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
(1): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
(2): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
(3): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
(4): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
(5): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True)
)
(linear1): Linear(in_features=256, out_features=2048, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=2048, out_features=256, bias=True)
(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
)
)
(output): Linear(in_features=256, out_features=407, bias=True)
(encoder_pos_drop): Dropout(p=0.05, inplace=False)
)
)
文章来源:https://blog.csdn.net/allrubots/article/details/135339356
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!