【VTKExamples::Visualization】第三期 Background设置
2024-01-09 10:43:50
很高兴在雪易的CSDN遇见你?
VTK技术爱好者 QQ:870202403
前言
本文分享几种背景设置的方式,希望对各位小伙伴有所帮助!
感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步!
你的点赞就是我的动力(^U^)ノ~YO
目录
1. 纯色背景
vtkSmartPointer<vtkRenderer> renderer =
vtkSmartPointer<vtkRenderer>::New();
renderer->AddActor(actor);
renderer->SetBackground(1,.5,1); // Background color
2. 渐变背景
vtkSmartPointer<vtkRenderer> renderer =
vtkSmartPointer<vtkRenderer>::New();
// Add the actor to the scene
renderer->AddActor(actor);
vtkSmartPointer<vtkNamedColors> colors =
vtkSmartPointer<vtkNamedColors>::New();
// Setup the background gradient
renderer->GradientBackgroundOn();
renderer->SetBackground(colors->GetColor3d("Banana").GetData());
renderer->SetBackground2(colors->GetColor3d("Tomato").GetData());
3. 纹理背景
??
3.1 创建点集PolyData对象
// Create a set of vertices (polydata)
vtkSmartPointer<vtkPoints> points =
vtkSmartPointer<vtkPoints>::New();
points->InsertNextPoint(100.0, 0.0, 0.0);
points->InsertNextPoint(300.0, 0.0, 0.0);
// Setup colors
unsigned char white[3] = { 255, 255, 255 };
unsigned char black[3] = { 0, 0, 0 };
vtkSmartPointer<vtkUnsignedCharArray> vertexColors =
vtkSmartPointer<vtkUnsignedCharArray>::New();
vertexColors->SetNumberOfComponents(3);
vertexColors->SetName("Colors");
vertexColors->InsertNextTuple3(black[0], black[1], black[2]);
vertexColors->InsertNextTuple3(white[0], white[1], white[2]);
// We must make two objects, because the ShepardMethod uses the ActiveScalars, as does the renderer!
vtkSmartPointer<vtkPolyData> polydataToVisualize =
vtkSmartPointer<vtkPolyData>::New();
polydataToVisualize->SetPoints(points);
polydataToVisualize->GetPointData()->SetScalars(vertexColors);
vtkSmartPointer<vtkVertexGlyphFilter> vertexGlyphFilter =
vtkSmartPointer<vtkVertexGlyphFilter>::New();
vertexGlyphFilter->AddInputData(polydataToVisualize);
vertexGlyphFilter->Update();
//Create a mapper and actor
vtkSmartPointer<vtkPolyDataMapper> vertsMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
vertsMapper->ScalarVisibilityOff();
vertsMapper->SetInputConnection(vertexGlyphFilter->GetOutputPort());
vtkSmartPointer<vtkActor> vertsActor =
vtkSmartPointer<vtkActor>::New();
vertsActor->SetMapper(vertsMapper);
vertsActor->GetProperty()->SetColor(1, 0, 0);
vertsActor->GetProperty()->SetPointSize(3);
//此时点的颜色为(1,0,0);
//vertsMapper->ScalarVisibilityOff();注释后,颜色为黑白。
3.2 通过顶点插值轮廓
// Create a shepard filter to interpolate the vertices over a regularized image grid
vtkSmartPointer<vtkShepardMethod> shepard = vtkSmartPointer<vtkShepardMethod>::New();
shepard->SetInputData(polydataToProcess);
shepard->SetSampleDimensions(2, 2, 2);
shepard->SetModelBounds(100, 300, -10, 10, -10, 10);
shepard->SetMaximumDistance(1);
// Contour the shepard generated image at 3 isovalues
// The accuracy of the results are highly dependent on how the shepard filter is set up
vtkSmartPointer<vtkContourFilter> contourFilter = vtkSmartPointer<vtkContourFilter>::New();
/*contourFilter->SetNumberOfContours(3);
contourFilter->SetValue(0, 0.25);
contourFilter->SetValue(1, 0.50);
contourFilter->SetValue(2, 0.75);*/
contourFilter->SetNumberOfContours(4);
contourFilter->SetValue(0, 0.2);
contourFilter->SetValue(1, 0.4);
contourFilter->SetValue(2, 0.6);
contourFilter->SetValue(3, 0.8);
contourFilter->SetInputConnection(shepard->GetOutputPort());
contourFilter->Update();
完整示例代码
// Create a set of vertices (polydata)
vtkSmartPointer<vtkPoints> points =
vtkSmartPointer<vtkPoints>::New();
points->InsertNextPoint(100.0, 0.0, 0.0);
points->InsertNextPoint(300.0, 0.0, 0.0);
// Setup colors
unsigned char white[3] = { 255, 255, 255 };
unsigned char black[3] = { 0, 0, 0 };
vtkSmartPointer<vtkUnsignedCharArray> vertexColors =
vtkSmartPointer<vtkUnsignedCharArray>::New();
vertexColors->SetNumberOfComponents(3);
vertexColors->SetName("Colors");
vertexColors->InsertNextTuple3(black[0], black[1], black[2]);
vertexColors->InsertNextTuple3(white[0], white[1], white[2]);
// Create a scalar array for the pointdata, each value represents the distance
// of the vertices from the first vertex
vtkSmartPointer<vtkFloatArray> values =
vtkSmartPointer<vtkFloatArray>::New();
values->SetNumberOfComponents(1);
values->SetName("Values");
values->InsertNextValue(0.0);
values->InsertNextValue(1.0);
// We must make two objects, because the ShepardMethod uses the ActiveScalars, as does the renderer!
vtkSmartPointer<vtkPolyData> polydataToProcess =
vtkSmartPointer<vtkPolyData>::New();
polydataToProcess->SetPoints(points);
polydataToProcess->GetPointData()->SetScalars(values);
vtkSmartPointer<vtkPolyData> polydataToVisualize =
vtkSmartPointer<vtkPolyData>::New();
polydataToVisualize->SetPoints(points);
polydataToVisualize->GetPointData()->SetScalars(vertexColors);
vtkSmartPointer<vtkVertexGlyphFilter> vertexGlyphFilter =
vtkSmartPointer<vtkVertexGlyphFilter>::New();
vertexGlyphFilter->AddInputData(polydataToVisualize);
vertexGlyphFilter->Update();
//Create a mapper and actor
vtkSmartPointer<vtkPolyDataMapper> vertsMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
vertsMapper->ScalarVisibilityOff();
vertsMapper->SetInputConnection(vertexGlyphFilter->GetOutputPort());
vtkSmartPointer<vtkActor> vertsActor =
vtkSmartPointer<vtkActor>::New();
vertsActor->SetMapper(vertsMapper);
vertsActor->GetProperty()->SetColor(1, 0, 0);
vertsActor->GetProperty()->SetPointSize(3);
// Create a shepard filter to interpolate the vertices over a regularized image grid
vtkSmartPointer<vtkShepardMethod> shepard = vtkSmartPointer<vtkShepardMethod>::New();
shepard->SetInputData(polydataToProcess);
shepard->SetSampleDimensions(2, 2, 2);
shepard->SetModelBounds(100, 300, -10, 10, -10, 10);
shepard->SetMaximumDistance(1);
// Contour the shepard generated image at 3 isovalues
// The accuracy of the results are highly dependent on how the shepard filter is set up
vtkSmartPointer<vtkContourFilter> contourFilter = vtkSmartPointer<vtkContourFilter>::New();
/*contourFilter->SetNumberOfContours(3);
contourFilter->SetValue(0, 0.25);
contourFilter->SetValue(1, 0.50);
contourFilter->SetValue(2, 0.75);*/
contourFilter->SetNumberOfContours(4);
contourFilter->SetValue(0, 0.2);
contourFilter->SetValue(1, 0.4);
contourFilter->SetValue(2, 0.6);
contourFilter->SetValue(3, 0.8);
contourFilter->SetInputConnection(shepard->GetOutputPort());
contourFilter->Update();
//Create a mapper and actor for the resulting isosurfaces
vtkSmartPointer<vtkPolyDataMapper> contourMapper =
vtkSmartPointer<vtkPolyDataMapper>::New();
contourMapper->SetInputConnection(contourFilter->GetOutputPort());
contourMapper->ScalarVisibilityOn();
contourMapper->SetColorModeToMapScalars();
vtkSmartPointer<vtkActor> contourActor =
vtkSmartPointer<vtkActor>::New();
contourActor->SetMapper(contourMapper);
contourActor->GetProperty()->SetAmbient(1);
contourActor->GetProperty()->SetSpecular(0);
contourActor->GetProperty()->SetDiffuse(0);
// Report the results of the interpolation
double* range = contourFilter->GetOutput()->GetScalarRange();
std::cout << "Shepard interpolation:" << std::endl;
std::cout << "contour output scalar range: " << range[0] << ", " << range[1] << std::endl;
vtkIdType nCells = contourFilter->GetOutput()->GetNumberOfCells();
double bounds[6];
for (vtkIdType i = 0; i < nCells; ++i)
{
if (i % 2) // each isosurface value only has 2 cells to report on the odd ones
{
contourFilter->GetOutput()->GetCellBounds(i, bounds);
std::cout << "cell " << i << ", x position: " << bounds[0] << std::endl;
}
}
// Create a transfer function to color the isosurfaces
vtkSmartPointer<vtkColorTransferFunction> lut =
vtkSmartPointer<vtkColorTransferFunction>::New();
lut->SetColorSpaceToRGB();
lut->AddRGBPoint(range[0], 0, 0, 0);//black
lut->AddRGBPoint(range[1], 1, 1, 1);//white
lut->SetScaleToLinear();
contourMapper->SetLookupTable(lut);
// Create a renderer, render window and interactor
vtkSmartPointer<vtkRenderer> renderer =
vtkSmartPointer<vtkRenderer>::New();
renderer->GradientBackgroundOn();
renderer->SetBackground(0, 0, 1);
renderer->SetBackground2(1, 0, 1);
vtkSmartPointer<vtkRenderWindow> renderWindow =
vtkSmartPointer<vtkRenderWindow>::New();
renderWindow->AddRenderer(renderer);
renderer->AddActor(contourActor);
renderer->AddActor(vertsActor);
vtkSmartPointer<vtkRenderWindowInteractor> renderWindowInteractor =
vtkSmartPointer<vtkRenderWindowInteractor>::New();
renderWindowInteractor->SetRenderWindow(renderWindow);
// Position the camera so that the image produced is viewable
vtkCamera* camera = renderer->GetActiveCamera();
camera->SetPosition(450, 100, 100);
camera->SetFocalPoint(200, 0, 0);
camera->SetViewUp(0, 0, 1);
renderWindow->Render();
renderWindowInteractor->Start();
结论:
? ? ? ? 主要介绍背景创建的几种方法
感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步!
你的赞赏是我的最最最最大的动力(^U^)ノ~YO
文章来源:https://blog.csdn.net/qq_40041064/article/details/135461924
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!