高并发场景下如何实现系统限流?
在分布式高可用设计中,限流应该是应用最广泛的技术手段之一,今天一起来讨论一下,为什么需要限流,以及常见的限流算法都有哪些。
常见限流算法
限流是服务降级的一种手段,顾名思义,通过限制系统的流量,从而实现保护系统的目的。
合理的限流配置,需要了解系统的吞吐量,所以,限流一般需要结合容量规划和压测来进行。当外部请求接近或者达到系统的最大阈值时,触发限流,采取其他的手段进行降级,保护系统不被压垮。常见的降级策略包括延迟处理、拒绝服务、随机拒绝等。
限流后的策略,其实和 Java 并发编程中的线程池非常类似,我们都知道,线程池在任务满的情况下,可以配置不同的拒绝策略,比如:
-
AbortPolicy,会丢弃任务并抛出异常;
-
DiscardPolicy,丢弃任务,不抛出异常;
-
DiscardOldestPolicy 等,当然也可以自己实现拒绝策略。
Java 的线程池是开发中一个小的功能点,但是见微知著,也可以引申到系统的设计和架构上,将知识进行合理地迁移复用。
限流方案中有一点非常关键,那就是如何判断当前的流量已经达到我们设置的最大值,具体有不同的实现策略,下面进行简单分析。
计数器法
一般来说,我们进行限流时使用的是单位时间内的请求数,也就是平常说的 QPS,统计 QPS 最直接的想法就是实现一个计数器。
计数器法是限流算法里最简单的一种算法,我们假设一个接口限制 100 秒内的访问次数不能超过 10000 次,维护一个计数器,每次有新的请求过来,计数器加 1。这时候判断,如果计数器的值小于限流值,并且与上一次请求的时间间隔还在 100 秒内,允许请求通过,否则拒绝请求;如果超出了时间间隔,要将计数器清零。
下面的代码里使用 AtomicInteger 作为计数器,可以作为参考:
public class CounterLimiter {
//初始时间
private static long startTime = System.currentTimeMillis();
//初始计数值
private static final AtomicInteger ZERO = new AtomicInteger(0);
//时间窗口限制
private static final int interval = 10000;
//限制通过请求
private static int limit = 100;
//请求计数
private AtomicInteger requestCount = ZERO;
//获取限流
public boolean tryAcquire() {
long now = System.currentTimeMillis();
//在时间窗口内
if (now < startTime + interval) {
//判断是否超过最大请求
if (requestCount.get() < limit) {
requestCount.incrementAndGet();
return true;
}
return false;
} else {
//超时重置
requestCount = ZERO;
startTime = now;
return true;
}
}
}
计数器策略进行限流,可以从单点扩展到集群,适合应用在分布式环境中。单点限流使用内存即可,如果扩展到集群限流,可以用一个单独的存储节点,比如 Redis 或者 Memcached 来进行存储,在固定的时间间隔内设置过期时间,就可以统计集群流量,进行整体限流。
计数器策略有一个很大的缺点,是对临界流量不友好,限流不够平滑。假设这样一个场景,我们限制用户一分钟下单不超过 10 万次,现在在两个时间窗口的交汇点,前后一秒钟内,分别发送 10 万次请求。也就是说,窗口切换的这两秒钟内,系统接收了 20 万下单请求,这个峰值可能会超过系统阈值,影响服务稳定性。
对计数器算法的优化,就是避免出现两倍窗口限制的请求,可以使用滑动窗口算法实现,感兴趣的同学可以去了解一下。
漏桶和令牌桶算法
漏桶算法和令牌桶算法,在实际应用中更加广泛,也经常被拿来对比,所以我们放在一起进行分析。
漏桶算法可以用漏桶来对比,假设现在有一个固定容量的桶,底部钻一个小孔可以漏水,我们通过控制漏水的速度,来控制请求的处理,实现限流功能。
漏桶算法的拒绝策略很简单,如果外部请求超出当前阈值,则会在水桶里积蓄,一直到溢出,系统并不关心溢出的流量。漏桶算法是从出口处限制请求速率,并不存在上面计数器法的临界问题,请求曲线始终是平滑的。
漏桶算法的一个核心问题是,对请求的过滤太精准了,我们常说,水至清则无鱼,其实在限流里也是一样的,??我们限制每秒下单 10 万次,那 10 万零 1 次请求呢?是不是必须拒绝掉呢?
大部分业务场景下这个答案是否定的,虽然限流了,但还是希望系统允许一定的突发流量,这时候就需要令牌桶算法。
再来看一下令牌桶算法,在令牌桶算法中,假设我们有一个大小恒定的桶,这个桶的容量和设定的阈值有关,桶里放着很多令牌,通过一个固定的速率,往里边放入令牌,如果桶满了,就把令牌丢掉,最后桶中可以保存的最大令牌数永远不会超过桶的大小。
当有请求进入时,就尝试从桶里取走一个令牌,如果桶里是空的,那么这个请求就会被拒绝。
不知道你有没有应用过 Google 的 Guava 开源工具包,在 Guava 中,就有限流策略的工具类 RateLimiter,RateLimiter 基于令牌桶算法实现流量限制,使用非常方便。
RateLimiter 会按照一定的频率往桶里扔令牌,线程拿到令牌才能执行,RateLimter 的 API 可以直接应用,主要方法是 acquire 和 tryAcquire,acquire 会阻塞,tryAcquire 方法则是非阻塞的。下面是一个简单的示例:
public class LimiterTest {
public static void main(String[] args) throws InterruptedException {
//允许10个,permitsPerSecond
RateLimiter limiter = RateLimiter.create(100);
for(int i=1;i<200;i++){
if (limiter.tryAcquire(1)){
System.out.println("第"+i+"次请求成功");
}else{
System.out.println("第"+i+"次请求拒绝");
}
}
}
}
?
不同限流算法的比较
计数器算法实现比较简单,特别适合集群情况下使用,但是要考虑临界情况,可以应用滑动窗口策略进行优化,当然也是要看具体的限流场景。
漏桶算法和令牌桶算法,漏桶算法提供了比较严格的限流,令牌桶算法在限流之外,允许一定程度的突发流量。在实际开发中,我们并不需要这么精准地对流量进行控制,所以令牌桶算法的应用更多一些。
如果我们设置的流量峰值是 permitsPerSecond=N,也就是每秒钟的请求量,计数器算法会出现 2N 的流量,漏桶算法会始终限制N的流量,而令牌桶算法允许大于 N,但不会达到 2N 这么高的峰值。
关于这几种限流算法的扩展讨论,我之前在博客中也分析过,可以点击:?96秒破百亿,双11如何抗住高并发流量,作为补充阅读。
总结
本文总结了系统限流的常用策略,包括计数器法、漏桶算法、令牌桶算法。
在你的工作中,在对系统进行高可用设计时,都做了哪些工作呢?比如如何进行容量评估,超出系统水位如何进行限流,欢迎留言分享你的经验。
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!