YOLOv8算法改进【NO.96】针对小目标检测有效果的ASF-YOLO

2023-12-22 15:14:32

?前? ?言
? ? ? ?YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通:

第一,创新主干特征提取网络,将整个Backbone改进为其他的网络,比如这篇文章中的整个方法,直接将Backbone替换掉,理由是这种改进如果有效果,那么改进点就很值得写,不算是堆积木那种,也可以说是一种新的算法,所以做实验的话建议朋友们优先尝试这种改法。

第二,创新特征融合网络,这个同理第一,比如将原yolo算法PANet结构改进为Bifpn等。

第三,改进主干特征提取网络,就是类似加个注意力机制等。根据个人实验情况来说,这种改进有时候很难有较大的检测效果的提升,乱加反而降低了特征提取能力导致mAP下降,需要有技巧的添加。

第四,改进特征融合网络,理由、方法等同上。

第五,改进检测头,更换检测头这种也算个大的改进点。

第六,改进损失函数,nms、框等,要是有提升检测效果的话,算是一个小的改进点,也可以凑字数。

第七,对图像输入做改进,改进数据增强方法等。

第八,剪枝以及蒸馏等,这种用于特定的任务,比如轻量化检测等,但是这种会带来精度的下降。

...........未完待续

一、创新改进思路或解决的问题

? ? ? ?这篇CVPR顶会提出的出了一种新的基于注意尺度序列融合的YOLO框架(ASF-YOLO),该框架结合了空间和尺度特征,实现了准确快速的细胞实例分割。

二、基本原理

原文链接:?[2312.06458] ASF-YOLO: A Novel YOLO Model with Attentional Scale Sequence Fusion for Cell Instance Segmentation (arxiv.org)

?摘要:我们提出了一种新的基于注意尺度序列融合的YOLO框架(ASF-YOLO),该框架结合了空间和尺度特征,实现了准确快速的细胞实例分割。基于YOLO分割框架,我们使用尺度序列特征融合(SSFF)模块来增强网络的多尺度信息提取能力,并使用三重特征编码器(TPE)模块来融合不同尺度的特征图以增加详细信息。我们进一步引入了一种通道和位置注意机制(CPAM)来集成SSFF和TPE模块,该模块专注于信息通道和空间位置相关的小对象,以提高检测和分割性能。在两个细胞数据集上的实验验证表明,所提出的ASF-YOLO模型具有显著的分割精度和速度。在2018年数据科学碗数据集上,它实现了0.91的盒mAP、0.887的掩码mAP和47.3 FPS的推理速度,优于最先进的方法。

?

?

三、?添加方法

部分代码如下所示,详细改进代码可私信我获取。(扣扣2453038530)

nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]], #10
   [4, 1, Conv, [512, 1, 1]], #11
   [[-1, 6, -2], 1, Zoom_cat, []],  # 12 cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]], #14
   [2, 1, Conv, [256, 1, 1]], #15
   [[-1, 4, -2], 1, Zoom_cat, []],  #16  cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]], #18
   [[-1, 14], 1, Concat, [1]],  #19 cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]], #21
   [[-1, 10], 1, Concat, [1]],  #22 cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[4, 6, 8], 1, ScalSeq, [256]], #24 args[inchane]
   [[17, -1], 1, Add, []], #25

   [[25, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

四、总结

预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:该方法不仅仅是适用改进YOLOv8,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。

最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!

文章来源:https://blog.csdn.net/m0_70388905/article/details/135151077
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。