AcWing算法进阶课-1.1.2Dinic/ISAP求最大流
算法进阶课整理
CSDN个人主页:更好的阅读体验

原题链接
题目描述
给定一个包含 n n n 个点 m m m 条边的有向图,并给定每条边的容量,边的容量非负。
图中可能存在重边和自环。求从点 S S S 到点 T T T 的最大流。
输入格式
第一行包含四个整数 n , m , S , T n,m,S,T n,m,S,T。
接下来 m m m 行,每行三个整数 u , v , c u,v,c u,v,c,表示从点 u u u 到点 v v v 存在一条有向边,容量为 c c c。
点的编号从 1 1 1 到 n n n。
输出格式
输出点 S S S 到点 T T T 的最大流。
如果从点 S S S 无法到达点 T T T 则输出 0 0 0。
数据范围
 
     
      
       
       
         2 
        
       
         ≤ 
        
       
         n 
        
       
         ≤ 
        
       
         10000 
        
       
      
        2 \le n \le 10000 
       
      
    2≤n≤10000,
  
     
      
       
       
         1 
        
       
         ≤ 
        
       
         m 
        
       
         ≤ 
        
       
         100000 
        
       
      
        1 \le m \le 100000 
       
      
    1≤m≤100000,
  
     
      
       
       
         0 
        
       
         ≤ 
        
       
         c 
        
       
         ≤ 
        
       
         10000 
        
       
      
        0 \le c \le 10000 
       
      
    0≤c≤10000,
  
     
      
       
       
         S 
        
       
         ≠ 
        
       
         T 
        
       
      
        S \neq T 
       
      
    S=T
算法步骤
Dinic 算法其实是 EK 算法的一个暴力的优化,EK 算法每次只能搜索一条增广路径,而 Dinic 算法每次都用 DFS 的形式尽可能多的搜索增广路径。
而图中可能存在环,为了保证 DFS 的过程中不会造成死循环,这里可以使用分层图,这样每次都是一层一层往下搜索,就不会出现死循环。
- BFS 建立分层图
- DFS 找出所有能增广的路径
- 累加最大流量
注意: Dinic 算法对于优化非常敏感,如果优化的不好就可能直接 TLE
算法时间复杂度 O ( n 2 m ) O(n^2m) O(n2m)
AC Code
 
C + + \text{C}++ C++
#include <iostream>
#include <cstring>
using namespace std;
const int N = 10010, M = 200010;
const int INF = 1e9;
int n, m, S, T;
int h[N], e[M], ne[M], f[M], idx;
int d[N], q[N], cur[N];
// d[] 存分层图中每个点的深度
// q[] 手写队列
// cur[] 当前弧优化
inline void add(int a, int b, int c)
{
    e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx ++ ; // 正向边
    e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx ++ ; // 反向边,用于反悔
}
bool bfs()
{
    memset(d, -1, sizeof d); // 记得初始化
    int hh = 0, tt = 0;
    q[0] = S, d[S] = 0, cur[S] = h[S];
    // 将源点加入队列,源点深度为0,初始化源点当前弧为表头
    while (hh <= tt)
    {
        int t = q[hh ++ ];
        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if (d[j] == -1 && f[i]) // 存在增广路才能从这里分层
            {
                d[j] = d[t] + 1; // 更新深度
                cur[j] = h[j]; // 所有点当前弧最开始都是表头
                if (j == T) return true; // 如果找到汇点了就说明有增广路
                q[ ++ tt] = j;
            }
        }
    }
    return false; // 没有增广路
}
int find(int u, int lim) // DFS,u是当前点,lim是u之前的路径能流过的最大值
{
    if (u == T) return lim; // 如果已经流到汇点了就返回这个最大值
    int flow = 0; // 当前往下流的流量
    for (int i = cur[u]; ~i && flow < lim; cur[u] = i, i = ne[i])
    // 注意应从当前弧开始遍历,并且每次要更新。没有剩余流量也应该退出
    {
        int j = e[i];
        if (d[j] == d[u] + 1 && f[i])
        // 按分层图遍历,防止死循环
        {
            int t = find(j, min(f[i], lim - flow));
            // 找到后面能流的最大值
            if (!t) d[j] = -1;
            // 如果没有流量那么说明后面没有增广路了,这个点不会用到,将深度设为-1
            f[i] -= t, f[i ^ 1] += t, flow += t;
            // 当前边减流量,反向边加流量,实际流量加流量
        }
    }
    return flow;
}
int dinic()
{
    int r = 0, flow = 0;
    while (bfs()) while ((flow = find(S, INF))) r += flow;
    // 只要存在增广路就一直DFS,直到DFS出的流量为0
    return r;
}
int main()
{
    int a, b, c;
    memset(h, -1, sizeof h);
    scanf("%d%d%d%d", &n, &m, &S, &T);
    while (m -- )
    {
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    printf("%d\n", dinic());
    return 0;
}

最后,如果觉得对您有帮助的话,点个赞再走吧!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!