代码随想录算法训练营第50天|● 123.买卖股票的最佳时机III ● 188.买卖股票的最佳时机IV
123. 买卖股票的最佳时机 III
困难
相关标签
相关企业
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:
输入:prices = [1]
输出:0
提示:
- 1 <= prices.length <= 10(5)
- 0 <= prices[i] <= 10(5)
思路
- 不能同时参与多笔交易
- 所以分成5种状态
- 没有操作 (其实我们也可以不设置这个状态)
- 第一次持有股票
- 第一次不持有股票
- 第二次持有股票
- 第二次不持有股票
func maxProfit_iii(prices []int) int {
dp := make([][]int, len(prices))
for i := 0; i < len(prices); i++ {
dp[i] = make([]int, 5)
}
dp[0][0] = 0
dp[0][1] = -prices[0]
dp[0][2] = 0
dp[0][3] = -prices[0]
dp[0][4] = 0
for i := 1; i < len(prices); i++ {
dp[i][0] = dp[i-1][0]
dp[i][1] = max(dp[i-1][1], dp[i-1][0]-prices[i])
dp[i][2] = max(dp[i-1][2], dp[i-1][1]+prices[i])
dp[i][3] = max(dp[i-1][3], dp[i-1][2]-prices[i])
dp[i][4] = max(dp[i-1][4], dp[i-1][3]+prices[i])
}
return dp[len(prices)-1][4]
}
188. 买卖股票的最佳时机 IV
已解答
困难
相关标签
相关企业
给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
提示:
- 1 <= k <= 100
- 1 <= prices.length <= 1000
- 0 <= prices[i] <= 1000
代码
func maxProfit(k int, prices []int) int {
/*
0不操作
1第1支持有
2第1支不持有
第2支持有
第2支不持有
……
第k支持有
第k支不持有,共2k+1
*/
n := len(prices)
if n <= 1 {
return 0
}
// 定义状态数组
dp := make([][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([]int, 2*k+1)
}
// 初始化第一天的状态
for i := 1; i < 2*k+1; i += 2 {
dp[0][i] = -prices[0]
}
// 动态规划
for i := 1; i < n; i++ {
for j := 1; j < 2*k+1; j += 2 {
dp[i][j] = max(dp[i-1][j-1]-prices[i], dp[i-1][j])
dp[i][j+1] = max(dp[i-1][j]+prices[i], dp[i-1][j+1])
}
}
return dp[n-1][2*k]
}
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!