2023/12/17 n层正方形
【问题描述】编写程序,输出n层正方形图案。正方形图案最外层是第一层,每层用的数字和层数相同。
【输入形式】正方形图案的层数n
【输出形式】2n-1行2n-1列数据,一行上的数据用一个空格分隔
【样例输入】
3
【样例输出】
1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1
【样例说明】3层图案,最外层都是1,里面一层都是2,最里面一层只有一个数3,所以是5×5的矩形。
这个题历来有很多做法。我的老师,我的学长,我自己感觉有三种做法。(也许?)?
老师的做法如下,他的代码注释很详细,我就不再过多解释了
#include <iostream>
// #include <math.h>
#include <cmath>
#define MAX_NUM (100)
using namespace std;
int main(void)
{
// 输入层数n
size_t n = 1;
cin >> n;
// 正方形的大小 n+n-1
size_t NUM = n + n - 1;
// 建议给学生这样讲,二维动态数组不见得兼容
int arr[MAX_NUM][MAX_NUM];
// 规律 从1开始,每进一层step 数字+1
for (size_t step = 0; step < n; step++)
{
// 每进一层,边框横坐标 -1
for (size_t i = step; i < NUM-step; i++)
{
每进一层,边框纵坐标 -1
for (size_t j = step; j < NUM-step; j++)
{
// 找到缩小后矩阵的边框 上框、左框
if ((i == step) || (j == step) )
{
arr[i][j] = step + 1;
}
// 找到缩小后矩阵的边框 下框、右框
if((i == (NUM-step-1)) || (j == (NUM - step-1))){
arr[i][j] = step + 1;
}
}
}
}
// 输出矩阵
for (size_t i = 0; i < NUM; i++)
{
for (size_t j = 0; j < NUM; j++)
{
cout << arr[i][j]<< ' ';
}
cout << endl;
}
}
第二种是学长的做法。他是从这个图形的对称性入手解决问题。这里贴出他的文章链接:
观察结构,发现所要输出的方阵根据主对角线(左上到右下)对称,因此只需找到输出主对角线以上(含主对角线)的部分即可。
首先解决主对角线(第一组数),主对角线数字顺序为1,2,……,n-1,n , ?n-1,……,2,1也是对称的,且根据 n 对称。为了方便起见,令for语句中 i 的初始值为1,则此时每个 i 对应的都是arr[i-1][i-1]。为了方便描述,不妨将数组中的元素命名为m,当 i <=n时,m=i;当i > n时,m=2* n-i。
此时主对角线 ?(第一行第一列,第二行第二列,……,第2* n-1行第2* n-1列) ? 解决完毕,下面来看第二组 ?(第一行第二列,第二行第三节,……,第2* n-2行第2* n-1列) ?。
此时第二组数的总数为2* n-2,此时最中间的数为n-1(此时最中间的数有两个,但无妨),此时每个 i 对应的数组元素是arr[i-1][i-1+]〕(即arr[i-1][ i ]),同样用m代替。和第一组类似,当 i<=n时,m=i;当 i > n时,由于第二组总数个数为偶数,因此第一组公式不合适,因此需要找一个同时适用于奇数个数和偶数个数的公式。此时考虑第三组数(第一行第三列,第二行第四列,……,第n-3行第n-1列) 最中间的数字也是n-1,进一步证明了上面那个公式不合适。接下来有两种方法解决这个问题 :
方法一 ??
只讨论奇数组(1、3、5、……、2* n-1组)?这时第一组数中那个公式就可以用了,即第 j 组数的个数为2* n-j,最中间的数为(2* n-j+1)/2 ?(不妨记为n1),当 i<=n1时,m=i;当i ? >n1时,m=2*n1-i 将所有奇数组放到一个for循环中
这时可以发现,所有空缺的偶数组的数都是前面的数和后面的数的平均数
方法二 ??
从出现的问题出发,找到一个新的公式为了方便起见,不妨拿n=3举例,此时第一组数为1,2,3,2,1;第二组数为1,2,2,1;如果按照上面那个公式第一组数在 i >3时,依次为2*3-4,2*3-5 ?第二组数在 i >2时,依次为2*2-3,2*2-4 显然第二组数与我们想要得到的不同,结果差了1,因此考虑如何才能得到我们想要的结果,也许(2*2+1)-3,(2*2+1)-4可以得到,这里可以用if条件语录,但是有些繁琐,我们需要得到一个适用于所有情况的公式,第 j 组中间的数为n-j(记作a),第 j 组数的个数为2* n-1-j(记作b),由2* a-1=b可得,a=( b+1)/2 ?(此时不论b为奇数还是偶数,由int整型得到的a为一个整数),于是 i > n1时公式可以改为m=2* a-i,此时将所有数放到for循环中。
以上两个方法自行选择
得到主对角线及主对角线以上部分的数后,主对角线下的数就很容易得到了,由矩阵对称可令a[i-1-j][i-1]=a[i-1][i-1-j] ? ?于是,所要求得的矩阵就完全求出了
运算部分需要有嵌套循环,内层为 i 的循环,i 表示第几行,外层为m的循环,i + m表示第几列
————————————————
版权声明:本文为CSDN博主「玄殛~」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_73552988/article/details/127855127
http://t.csdnimg.cn/TqZS1http://t.csdnimg.cn/TqZS1第三种是我自己的想法。我拿到这个问题先观察了它给出的样例,发现了一个小窍门(应该算是?)
我们来观察这个图案。每个位置所对应的数字其实是该位置到四条边的距离取最小值。如果说1到四条边的距离为1,那么我们可以如下图推出每一个位置所对应的数字。比如下图。
这样就可以通过代码解决问题了。?
#include<iostream>
using namespace std;
int main()
{
int n;
cin >> n;
for (int i = 0; i < 2 * n - 1; i++)
{
for (int j = 0; j < 2 * n - 1; j++)
{
int num = min(min(i, j), min(2 * n - i - 2, 2 * n - j - 2))+1;
cout << num << " ";
}
cout << endl;
}
return 0;
}
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!