[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(3) 质量刚体的在坐标系下运动
2024-01-09 15:30:11
本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
黎 旭,陈 强 洪,甄 文 强 等.惯 性 张 量 平 移 和 旋 转 复 合 变 换 的 一 般 形 式 及 其 应 用[J].工 程 数 学 学 报,2022,39(06):1005-1011.
食用方法
质量点的动量与角动量
刚体的动量与角动量——力与力矩的关系
惯性矩阵的表达与推导——在刚体运动过程中的作用
惯性矩阵在不同坐标系下的表达
机构运动学与动力学分析与建模 Ch00-2质量刚体的在坐标系下运动Part3
2.2.3 欧拉方程 Euler equation - 2
- 进而分析
H
?
Σ
M
F
=
m
t
o
t
a
l
?
R
?
G
F
×
V
?
G
F
+
∫
(
R
?
G
P
i
F
?
R
?
G
P
i
F
)
ω
?
M
F
d
m
i
?
∫
(
R
?
G
P
i
F
?
ω
?
M
F
)
R
?
G
P
i
F
d
m
i
\vec{H}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \vec{\omega}_{\mathrm{M}}^{F}}\mathrm{d}m_{\mathrm{i}}-\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_{\mathrm{i}}
HΣM?F?=mtotal??RGF?×VGF?+∫(RGPi?F??RGPi?F?)ωMF?dmi??∫(RGPi?F??ωMF?)RGPi?F?dmi?,有:
H ? Σ M F = m t o t a l ? R ? G F × V ? G F + ∫ ( R ? G P i F T R ? G P i F ? E 3 × 3 ? R ? G P i F R ? G P i F T ) d m i ? ω ? M F = m t o t a l ? R ? G F × V ? G F + [ I ] Σ M / G F ? ω ? M F H ? Σ M / G F = H ? Σ M F ? m t o t a l ? R ? G F × V ? G F = [ I ] Σ M / G F ? ω ? M F \begin{split} &\vec{H}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} =m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \\ &\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}=\vec{H}_{\Sigma _{\mathrm{M}}}^{F}-m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}=\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \end{split} ?HΣM?F?=mtotal??RGF?×VGF?+∫(RGPi?F?TRGPi?F??E3×3?RGPi?F?RGPi?F?T)dmi??ωMF?=mtotal??RGF?×VGF?+[I]ΣM?/GF??ωMF?HΣM?/GF?=HΣM?F??mtotal??RGF?×VGF?=[I]ΣM?/GF??ωMF??
则相对于质心点 G G G 存在:
{ τ ? G F = d h ? G F d t τ ? G / O F = d h ? G / O F d t + V ? O F × P ? G F P ? G F = m t o t a l V ? G F \begin{cases} \vec{\tau}_{\mathrm{G}}^{F}=\frac{\mathrm{d}\vec{h}_{\mathrm{G}}^{F}}{\mathrm{dt}}\\ \vec{\tau}_{\mathrm{G}/\mathrm{O}}^{F}=\frac{\mathrm{d}\vec{h}_{\mathrm{G}/\mathrm{O}}^{F}}{\mathrm{dt}}+\vec{V}_{\mathrm{O}}^{F}\times \vec{P}_{\mathrm{G}}^{F}\\ \vec{P}_{\mathrm{G}}^{F}=m_{\mathrm{total}}\vec{V}_{\mathrm{G}}^{F}\\ \end{cases} ? ? ??τGF?=dtdhGF??τG/OF?=dtdhG/OF??+VOF?×PGF?PGF?=mtotal?VGF?? - 对
H
?
Σ
M
/
O
F
\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}
HΣM?/OF?进一步推导,可得:
H ? Σ M / O F = ∑ i N R ? O P i F × P ? P i F = ∑ i N m P i ? R ? O P i F × ( ω ? F × R ? O P i F ) = ∑ i N m P i ? R ? ~ O P i F ? ( ω ? ~ F ? R ? O P i F ) = ∑ i N m P i ? [ I ^ J ^ K ^ ] T [ 0 ? z O P i F y O P i F z O P i F 0 ? x O P i F ? y O P i F x O P i F 0 ] ? [ I ^ J ^ K ^ ] T ( [ 0 ? w z P i F w y P i F w z P i F 0 ? w x P i F ? w y P i F w x P i F 0 ] ? [ x O P i F y O P i F z O P i F ] ) = ∑ i N m P i ? [ I ^ J ^ K ^ ] T [ [ ( y O P i F ) 2 + ( z O P i F ) 2 ] w x P i F ? ( x O P i F y O P i F ) w y P i F ? ( x O P i F z O P i F ) w z P i F ? ( y O P i F x O P i F ) w x P i F + [ ( x O P i F ) 2 + ( z O P i F ) 2 ] w y P i F ? ( y O P i F z O P i F ) w z P i F ? ( z O P i F x O P i F ) w x P i F ? ( z O P i F y O P i F ) w y P i F + [ ( x O P i F ) 2 + ( y O P i F ) 2 ] w z P i F ] = ∑ i N m P i ? [ I ^ J ^ K ^ ] T [ ( y O P i F ) 2 + ( z O P i F ) 2 ? x O P i F y O P i F ? x O P i F z O P i F ? y O P i F x O P i F ( x O P i F ) 2 + ( z O P i F ) 2 ? y O P i F z O P i F ? z O P i F x O P i F ? z O P i F y O P i F ( x O P i F ) 2 + ( y O P i F ) 2 ] [ w x P i F w y P i F w z P i F ] = [ I ^ J ^ K ^ ] T [ ∑ i N m P i ? [ ( y O P i F ) 2 + ( z O P i F ) 2 ] ? ∑ i N m P i ? x O P i F y O P i F ? ∑ i N m P i ? ( x O P i F z O P i F ) ? ∑ i N m P i ? ( y O P i F x O P i F ) ∑ i N m P i ? [ ( x O P i F ) 2 + ( z O P i F ) 2 ] ? ∑ i N m P i ? ( y O P i F z O P i F ) ? ∑ i N m P i ? ( z O P i F x O P i F ) ? ∑ i N m P i ? ( z O P i F y O P i F ) ∑ i N m P i ? [ ( x O P i F ) 2 + ( y O P i F ) 2 ] ] [ w x P i F w y P i F w z P i F ] ?? = [ I ^ J ^ K ^ ] T [ I x x I x y I x z I y x I y y I y z I z x I z y I z z ] [ w x P i F w y P i F w z P i F ] = [ I ^ J ^ K ^ ] T [ I x x w x P i F + I x y w y P i F + I x z w z P i F I y x w x P i F + I y y w y P i F + I y z w z P i F I z x w x P i F + I z y w y P i F + I z z w z P i F ] = [ I ^ J ^ K ^ ] T [ H x H y H z ] \begin{split} \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}&=\sum_i^N{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{P}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}^F\times \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F}\cdot \left( \tilde{\vec{\omega}}^F\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} 0& -z_{\mathrm{OP}_{\mathrm{i}}}^{F}& y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}& 0& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -y_{\mathrm{OP}_{\mathrm{i}}}^{F}& x_{\mathrm{OP}_{\mathrm{i}}}^{F}& 0\\ \end{matrix} \right] \cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left( \left[ \begin{matrix} 0& -w_{\mathrm{z}_{\mathrm{Pi}}}^{F}& w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}& 0& -w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ -w_{\mathrm{y}_{\mathrm{Pi}}}^{F}& w_{\mathrm{x}_{\mathrm{Pi}}}^{F}& 0\\ \end{matrix} \right] \cdot \left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right)} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& -z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]} \\ &=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] \,\, \\ &=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} I_{\mathrm{xx}}& I_{\mathrm{xy}}& I_{\mathrm{xz}}\\ I_{\mathrm{yx}}& I_{\mathrm{yy}}& I_{\mathrm{yz}}\\ I_{\mathrm{zx}}& I_{\mathrm{zy}}& I_{\mathrm{zz}}\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] =\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} I_{\mathrm{xx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{yx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{zx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] \\ &=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} H_{\mathrm{x}}\\ H_{\mathrm{y}}\\ H_{\mathrm{z}}\\ \end{array} \right] \end{split} HΣM?/OF??=i∑N?ROPi?F?×PPi?F?=i∑N?mPi???ROPi?F?×(ωF×ROPi?F?)=i∑N?mPi???R~OPi?F??(ω~F?ROPi?F?)=i∑N?mPi??? ?I^J^K^? ?T ?0zOPi?F??yOPi?F???zOPi?F?0xOPi?F??yOPi?F??xOPi?F?0? ?? ?I^J^K^? ?T ? ?0wzPi?F??wyPi?F???wzPi?F?0wxPi?F??wyPi?F??wxPi?F?0? ?? ?xOPi?F?yOPi?F?zOPi?F?? ? ?=i∑N?mPi??? ?I^J^K^? ?T ?[(yOPi?F?)2+(zOPi?F?)2]wxPi?F??(xOPi?F?yOPi?F?)wyPi?F??(xOPi?F?zOPi?F?)wzPi?F??(yOPi?F?xOPi?F?)wxPi?F?+[(xOPi?F?)2+(zOPi?F?)2]wyPi?F??(yOPi?F?zOPi?F?)wzPi?F??(zOPi?F?xOPi?F?)wxPi?F??(zOPi?F?yOPi?F?)wyPi?F?+[(xOPi?F?)2+(yOPi?F?)2]wzPi?F?? ?=i∑N?mPi??? ?I^J^K^? ?T ?(yOPi?F?)2+(zOPi?F?)2?yOPi?F?xOPi?F??zOPi?F?xOPi?F???xOPi?F?yOPi?F?(xOPi?F?)2+(zOPi?F?)2?zOPi?F?yOPi?F???xOPi?F?zOPi?F??yOPi?F?zOPi?F?(xOPi?F?)2+(yOPi?F?)2? ? ?wxPi?F?wyPi?F?wzPi?F?? ?= ?I^J^K^? ?T ?∑iN?mPi???[(yOPi?F?)2+(zOPi?F?)2]?∑iN?mPi???(yOPi?F?xOPi?F?)?∑iN?mPi???(zOPi?F?xOPi?F?)??∑iN?mPi???xOPi?F?yOPi?F?∑iN?mPi???[(xOPi?F?)2+(zOPi?F?)2]?∑iN?mPi???(zOPi?F?yOPi?F?)??∑iN?mPi???(xOPi?F?zOPi?F?)?∑iN?mPi???(yOPi?F?zOPi?F?)∑iN?mPi???[(xOPi?F?)2+(yOPi?F?)2]? ? ?wxPi?F?wyPi?F?wzPi?F?? ?= ?I^J^K^? ?T ?Ixx?Iyx?Izx??Ixy?Iyy?Izy??Ixz?Iyz?Izz?? ? ?wxPi?F?wyPi?F?wzPi?F?? ?= ?I^J^K^? ?T ?Ixx?wxPi?F?+Ixy?wyPi?F?+Ixz?wzPi?F?Iyx?wxPi?F?+Iyy?wyPi?F?+Iyz?wzPi?F?Izx?wxPi?F?+Izy?wyPi?F?+Izz?wzPi?F?? ?= ?I^J^K^? ?T ?Hx?Hy?Hz?? ??
其中:
- 若有: ω ? = [ I ^ J ^ K ^ ] T [ ω 1 ω 2 ω 3 ] , R ? = [ I ^ J ^ K ^ ] T [ r 1 r 2 r 3 ] \vec{\omega}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \omega _1\\ \omega _2\\ \omega _3\\ \end{array} \right] ,\vec{R}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} r_1\\ r_2\\ r_3\\ \end{array} \right] ω= ?I^J^K^? ?T ?ω1?ω2?ω3?? ?,R= ?I^J^K^? ?T ?r1?r2?r3?? ?,则有如下叉乘的计算:
ω ? × R ? = ω ? ~ ? R ? = [ I ^ J ^ K ^ ] T ( [ 0 ? ω 3 ω 2 ω 3 0 ? ω 1 ? ω 2 ω 1 0 ] ? [ r 1 r 2 r 3 ] ) \vec{\omega}\times \vec{R}=\tilde{\vec{\omega}}\cdot \vec{R}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left( \left[ \begin{matrix} 0& -\omega _3& \omega _2\\ \omega _3& 0& -\omega _1\\ -\omega _2& \omega _1& 0\\ \end{matrix} \right] \cdot \left[ \begin{array}{c} r_1\\ r_2\\ r_3\\ \end{array} \right] \right) ω×R=ω~?R= ?I^J^K^? ?T ? ?0ω3??ω2???ω3?0ω1??ω2??ω1?0? ?? ?r1?r2?r3?? ? ?- H ? Σ M / O F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F} HΣM?/OF?表示刚体 Σ M \Sigma _{\mathrm{M}} ΣM?
相对于(with respect to/W.R.T)
点 O O O 的角动量在固定坐标系 { F } \left\{ F \right\} {F}的表达。其投影分量满足:
[ H x H y H z ] = [ I x x w x P i F + I x y w y P i F + I x z w z P i F I y x w x P i F + I y y w y P i F + I y z w z P i F I z x w x P i F + I z y w y P i F + I z z w z P i F ] = [ I x x I x y I x z I y x I y y I y z I z x I z y I z z ] [ w x P i F w y P i F w z P i F ] = [ I ] [ w x P i F w y P i F w z P i F ] \left[ \begin{array}{c} H_{\mathrm{x}}\\ H_{\mathrm{y}}\\ H_{\mathrm{z}}\\ \end{array} \right] =\left[ \begin{array}{c} I_{\mathrm{xx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{yx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{zx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] =\left[ \begin{matrix} I_{\mathrm{xx}}& I_{\mathrm{xy}}& I_{\mathrm{xz}}\\ I_{\mathrm{yx}}& I_{\mathrm{yy}}& I_{\mathrm{yz}}\\ I_{\mathrm{zx}}& I_{\mathrm{zy}}& I_{\mathrm{zz}}\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] =\left[ I \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] ?Hx?Hy?Hz?? ?= ?Ixx?wxPi?F?+Ixy?wyPi?F?+Ixz?wzPi?F?Iyx?wxPi?F?+Iyy?wyPi?F?+Iyz?wzPi?F?Izx?wxPi?F?+Izy?wyPi?F?+Izz?wzPi?F?? ?= ?Ixx?Iyx?Izx??Ixy?Iyy?Izy??Ixz?Iyz?Izz?? ? ?wxPi?F?wyPi?F?wzPi?F?? ?=[I] ?wxPi?F?wyPi?F?wzPi?F?? ?- 矩阵 [ I ] \left[ I \right] [I]常被称为
{惯性矩阵Inertia-matrix
,有: H ? Σ M / O F = [ I ] ω ? F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}=\left[ I \right] \vec{\omega}^F HΣM?/OF?=[I]ωF,其中:
[ I ] = [ I x x I x y I x z I y x I y y I y z I z x I z y I z z ] = [ ∑ i N m P i ? [ ( y O P i F ) 2 + ( z O P i F ) 2 ] ? ∑ i N m P i ? x O P i F y O P i F ? ∑ i N m P i ? ( x O P i F z O P i F ) ? ∑ i N m P i ? ( y O P i F x O P i F ) ∑ i N m P i ? [ ( x O P i F ) 2 + ( z O P i F ) 2 ] ? ∑ i N m P i ? ( y O P i F z O P i F ) ? ∑ i N m P i ? ( z O P i F x O P i F ) ? ∑ i N m P i ? ( z O P i F y O P i F ) ∑ i N m P i ? [ ( x O P i F ) 2 + ( y O P i F ) 2 ] ] \begin{split} \left[ I \right] &=\left[ \begin{matrix} I_{\mathrm{xx}}& I_{\mathrm{xy}}& I_{\mathrm{xz}}\\ I_{\mathrm{yx}}& I_{\mathrm{yy}}& I_{\mathrm{yz}}\\ I_{\mathrm{zx}}& I_{\mathrm{zy}}& I_{\mathrm{zz}}\\ \end{matrix} \right] \\ &=\left[ \begin{matrix} \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}\\ \end{matrix} \right] \end{split} [I]?= ?Ixx?Iyx?Izx??Ixy?Iyy?Izy??Ixz?Iyz?Izz?? ?= ?∑iN?mPi???[(yOPi?F?)2+(zOPi?F?)2]?∑iN?mPi???(yOPi?F?xOPi?F?)?∑iN?mPi???(zOPi?F?xOPi?F?)??∑iN?mPi???xOPi?F?yOPi?F?∑iN?mPi???[(xOPi?F?)2+(zOPi?F?)2]?∑iN?mPi???(zOPi?F?yOPi?F?)??∑iN?mPi???(xOPi?F?zOPi?F?)?∑iN?mPi???(yOPi?F?zOPi?F?)∑iN?mPi???[(xOPi?F?)2+(yOPi?F?)2]? ??
上式的实际推导过程,是进行两次转置变化,在实际过程中可以理解成,适用于矩阵与矢量相乘的张量Tensor
乘法,因此也可将惯性矩阵
[
I
]
\left[ I \right]
[I]称为惯性张量Inertia Tensor
。而采用基于拉格朗日恒等式证明的三个向量的双重矢积公式,可能更利于理解:
- 三个向量的双重矢积公式:
(
r
?
1
×
r
?
2
)
×
r
?
3
=
(
r
?
1
?
r
?
3
)
r
?
2
?
(
r
?
2
?
r
?
3
)
r
?
1
\left( \vec{r}_1\times \vec{r}_2 \right) \times \vec{r}_3=\left( \vec{r}_1\cdot \vec{r}_3 \right) \vec{r}_2-\left( \vec{r}_2\cdot \vec{r}_3 \right) \vec{r}_1
(r1?×r2?)×r3?=(r1??r3?)r2??(r2??r3?)r1?
H ? Σ M / O F = ∑ i N R ? O P i F × P ? P i F = ∑ i N m P i ? R ? O P i F × ( ω ? F × R ? O P i F ) = ∑ i N m P i ? [ ( R ? O P i F ? R ? O P i F ) ω ? F ? ( ω ? F ? R ? O P i F ) R ? O P i F ] = ∑ i N m P i ? [ I ^ J ^ K ^ ] T [ ( [ x O P i F y O P i F z O P i F ] T [ x O P i F y O P i F z O P i F ] ) [ w x P i F w y P i F w z P i F ] ? ( [ w x P i F w y P i F w z P i F ] T [ x O P i F y O P i F z O P i F ] ) [ x O P i F y O P i F z O P i F ] ] = ∑ i N m P i ? [ I ^ J ^ K ^ ] T [ [ ( ( x O P i F ) 2 + ( y O P i F ) 2 + ( z O P i F ) 2 ) w x P i F ( ( x O P i F ) 2 + ( y O P i F ) 2 + ( z O P i F ) 2 ) w y P i F ( ( x O P i F ) 2 + ( y O P i F ) 2 + ( z O P i F ) 2 ) w z P i F ] ? [ ( w x P i F x O P i F + w y P i F y O P i F + w z P i F z O P i F ) x O P i F ( w x P i F x O P i F + w y P i F y O P i F + w z P i F z O P i F ) y O P i F ( w x P i F x O P i F + w y P i F y O P i F + w z P i F z O P i F ) z O P i F ] ] = ∑ i N m P i ? [ I ^ J ^ K ^ ] T [ [ ( y O P i F ) 2 + ( z O P i F ) 2 ] w x P i F ? ( x O P i F y O P i F ) w y P i F ? ( x O P i F z O P i F ) w z P i F ? ( y O P i F x O P i F ) w x P i F + [ ( x O P i F ) 2 + ( z O P i F ) 2 ] w y P i F ? ( y O P i F z O P i F ) w z P i F ? ( z O P i F x O P i F ) w x P i F ? ( z O P i F y O P i F ) w y P i F + [ ( x O P i F ) 2 + ( y O P i F ) 2 ] w z P i F ] = ∑ i N m P i ? [ I ^ J ^ K ^ ] T [ ( y O P i F ) 2 + ( z O P i F ) 2 ? x O P i F y O P i F ? x O P i F z O P i F ? y O P i F x O P i F ( x O P i F ) 2 + ( z O P i F ) 2 ? y O P i F z O P i F ? z O P i F x O P i F ? z O P i F y O P i F ( x O P i F ) 2 + ( y O P i F ) 2 ] [ w x P i F w y P i F w z P i F ] \begin{split} \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}&=\sum_i^N{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{P}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}^F\times \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) \vec{\omega}^F-\left( \vec{\omega}^F\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \left( \left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right) \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] -\left( \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right) \left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \left[ \begin{array}{c} \left( \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ \left( \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ \left( \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] -\left[ \begin{array}{c} \left( w_{\mathrm{x}_{\mathrm{Pi}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{y}_{\mathrm{Pi}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{z}_{\mathrm{Pi}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \left( w_{\mathrm{x}_{\mathrm{Pi}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{y}_{\mathrm{Pi}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{z}_{\mathrm{Pi}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \left( w_{\mathrm{x}_{\mathrm{Pi}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{y}_{\mathrm{Pi}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{z}_{\mathrm{Pi}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}}\left[ \begin{matrix} \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& -z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] \end{split} HΣM?/OF??=i∑N?ROPi?F?×PPi?F?=i∑N?mPi???ROPi?F?×(ωF×ROPi?F?)=i∑N?mPi???[(ROPi?F??ROPi?F?)ωF?(ωF?ROPi?F?)ROPi?F?]=i∑N?mPi??? ?I^J^K^? ?T ? ? ?xOPi?F?yOPi?F?zOPi?F?? ?T ?xOPi?F?yOPi?F?zOPi?F?? ? ? ?wxPi?F?wyPi?F?wzPi?F?? ?? ? ?wxPi?F?wyPi?F?wzPi?F?? ?T ?xOPi?F?yOPi?F?zOPi?F?? ? ? ?xOPi?F?yOPi?F?zOPi?F?? ? ?=i∑N?mPi??? ?I^J^K^? ?T ? ?((xOPi?F?)2+(yOPi?F?)2+(zOPi?F?)2)wxPi?F?((xOPi?F?)2+(yOPi?F?)2+(zOPi?F?)2)wyPi?F?((xOPi?F?)2+(yOPi?F?)2+(zOPi?F?)2)wzPi?F?? ?? ?(wxPi?F?xOPi?F?+wyPi?F?yOPi?F?+wzPi?F?zOPi?F?)xOPi?F?(wxPi?F?xOPi?F?+wyPi?F?yOPi?F?+wzPi?F?zOPi?F?)yOPi?F?(wxPi?F?xOPi?F?+wyPi?F?yOPi?F?+wzPi?F?zOPi?F?)zOPi?F?? ? ?=i∑N?mPi??? ?I^J^K^? ?T ?[(yOPi?F?)2+(zOPi?F?)2]wxPi?F??(xOPi?F?yOPi?F?)wyPi?F??(xOPi?F?zOPi?F?)wzPi?F??(yOPi?F?xOPi?F?)wxPi?F?+[(xOPi?F?)2+(zOPi?F?)2]wyPi?F??(yOPi?F?zOPi?F?)wzPi?F??(zOPi?F?xOPi?F?)wxPi?F??(zOPi?F?yOPi?F?)wyPi?F?+[(xOPi?F?)2+(yOPi?F?)2]wzPi?F?? ?=i∑N?mPi??? ?I^J^K^? ?T ?(yOPi?F?)2+(zOPi?F?)2?yOPi?F?xOPi?F??zOPi?F?xOPi?F???xOPi?F?yOPi?F?(xOPi?F?)2+(zOPi?F?)2?zOPi?F?yOPi?F???xOPi?F?zOPi?F??yOPi?F?zOPi?F?(xOPi?F?)2+(yOPi?F?)2? ? ?wxPi?F?wyPi?F?wzPi?F?? ??
文章来源:https://blog.csdn.net/LiongLoure/article/details/135480779
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!