批量估计问题
最大后验估计MAP
x
^
=
arg
?
max
?
x
p
(
x
∣
u
,
y
)
\hat{x}=\arg \max _{x}p\left( x|u,y\right)
x^=argxmax?p(x∣u,y)
我们希望在给定先验信息和所有时刻的输入
u
u
u和观测
y
y
y,推断出所有时刻的最优状态
x
^
\hat{x}
x^。为此我们定义几个宏观变量。
x
=
x
0
:
K
=
(
x
0
,
?
?
,
x
K
)
u
=
(
x
ˇ
0
,
u
1
:
k
)
=
(
x
ˇ
0
,
u
1
,
?
?
,
u
K
)
y
=
y
0
:
K
=
(
y
0
,
?
?
,
y
K
)
\begin{aligned} x&=x_{0:K}=\left( x_{0},\cdots ,x_{K}\right) \\ u&=(\check{x}_{0},u_{1:k}) =\left( \check{x}_{0},u_{1},\cdots ,u_{K}\right)\\ y&=y_{0:K}=\left( y_{0},\cdots ,y_{K}\right) \end{aligned}
xuy?=x0:K?=(x0?,?,xK?)=(xˇ0?,u1:k?)=(xˇ0?,u1?,?,uK?)=y0:K?=(y0?,?,yK?)?
用贝叶斯公式重写MAP估计:
x
^
=
arg
?
max
?
x
p
(
x
∣
u
,
y
)
=
arg
?
max
?
x
p
(
y
∣
x
,
u
)
p
(
x
∣
u
)
p
(
y
∣
u
)
=
arg
?
max
?
x
p
(
y
∣
x
)
p
(
x
∣
u
)
\hat{x}=\arg \max _{x}p\left( x| u,y\right) =\arg \max _{x}\dfrac{p\left( y|x,u\right) p\left( x|u\right) }{p\left( y| u\right) }=\arg \max _{x}p\left( y| x\right) p\left( x| u\right)
x^=argxmax?p(x∣u,y)=argxmax?p(y∣u)p(y∣x,u)p(x∣u)?=argxmax?p(y∣x)p(x∣u)
这里我们吧分母略去,因为它与
x
x
x无关。同时省略
p
(
y
∣
x
,
u
)
p(y|x,u)
p(y∣x,u)中的
u
u
u,因为如果
x
x
x已知,它不会影响观测数据(观测方程与它无关)。
接下来我们做出一个重要假设:对于所有时刻
k
=
0
,
?
?
,
K
k=0,\cdots,K
k=0,?,K,所有噪声项
w
k
w_k
wk?和
n
k
n_k
nk?之间是无关的,即
y
k
y_k
yk?只与
x
k
x_k
xk?有关,则可以用乘法公式对
p
(
y
∣
x
)
p(y|x)
p(y∣x)进行因子分解:
p
(
y
∣
x
)
=
p
(
y
0
∣
x
0
:
K
)
p
(
y
1
∣
x
0
:
K
,
y
0
)
?
p
(
y
k
∣
x
0
:
K
,
y
0
:
K
?
1
)
=
∏
k
=
0
K
p
(
y
k
∣
x
k
)
\begin{aligned} p\left( y| x\right) &=p\left( y_{0}| x_{0:K}\right) p\left( y_{1}| x_{0:K},y_{0}\right) \cdots p\left( y_{k}| x_{0:K},y_{0:K-1}\right) \\ &=\prod ^{K}_{k=0}p\left( y_{k}| x_{k}\right) \end{aligned}
p(y∣x)?=p(y0?∣x0:K?)p(y1?∣x0:K?,y0?)?p(yk?∣x0:K?,y0:K?1?)=k=0∏K?p(yk?∣xk?)?
同理,
x
k
x_k
xk?只与
x
k
?
1
,
u
k
x_{k-1},u_k
xk?1?,uk? 有关,可得:
p
(
x
∣
u
)
=
p
(
x
0
∣
u
)
p
(
x
1
∣
u
,
x
0
)
…
p
(
x
K
∣
u
,
x
0
:
K
?
1
)
=
p
(
x
0
∣
x
ˇ
0
)
∏
k
=
1
K
p
(
x
k
∣
x
k
?
1
,
u
k
)
\begin{aligned} p\left( x| u\right) &=p\left( x_{0}| u\right) p\left( x_{1}| u,x_{0}\right) \ldots p\left( x_{K}| u,x_{0:K-1}\right) \\ &=p\left( x_{0}| \check{x}_{0}\right) \prod ^{K}_{k=1}p\left( x_{k}| x_{k-1},u_{k}\right) \end{aligned}
p(x∣u)?=p(x0?∣u)p(x1?∣u,x0?)…p(xK?∣u,x0:K?1?)=p(x0?∣xˇ0?)k=1∏K?p(xk?∣xk?1?,uk?)?
p ( x 0 ∣ x ˇ 0 ) = 1 ( 2 π ) N det ? P ˇ 0 × exp ? ( ? 1 2 ( x 0 ? x ˇ 0 ) T P ˇ 0 ? 1 ( x 0 ? x ˇ 0 ) ) p\left( x_{0}| \check{x}_{0}\right) =\dfrac{1}{\sqrt{\left( 2\pi \right) ^{N}\det \check{P}_{0}}}\times \exp \left( -\dfrac{1}{2}\left( x_{0}-\check{x}_{0}\right) ^{T}\check{P}_{0}^{-1}\left( x_{0}-\check{x}_{0}\right) \right) p(x0?∣xˇ0?)=(2π)NdetPˇ0??1?×exp(?21?(x0??xˇ0?)TPˇ0?1?(x0??xˇ0?))
p ( x k ∣ x k ? 1 , u k ) = 1 ( 2 π ) N det ? Q k × exp ? ( ? 1 2 ( x k ? f ( x k ? 1 , u k , 0 ) ) T Q k ? 1 ( x k ? f ( x k ? 1 , u k , 0 ) ) ) p\left( x_{k}| x_{k-1},u_{k}\right) =\dfrac{1}{\sqrt{\left( 2\pi \right) ^{N}\det Q_{k}}}\times \exp \left( -\dfrac{1}{2}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) ^{T}Q_{k}^{-1}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) \right) p(xk?∣xk?1?,uk?)=(2π)NdetQk??1?×exp(?21?(xk??f(xk?1?,uk?,0))TQk?1?(xk??f(xk?1?,uk?,0)))
p
(
y
k
∣
x
k
)
=
1
(
2
π
)
M
det
?
R
k
×
exp
?
(
?
1
2
(
y
k
?
h
(
x
k
,
0
)
)
T
R
k
?
1
(
y
k
?
h
(
x
k
,
0
)
)
)
p\left( y_{k}| x_{k}\right) =\dfrac{1}{\sqrt{\left( 2\pi \right) ^{M}\det R_{k}}}\times \exp \left( -\dfrac{1}{2}\left( y_{k}-h\left( x_{k},0\right) \right) ^{T}R_{k}^{-1}\left( y_{k}-h\left( x_{k},0\right) \right) \right)
p(yk?∣xk?)=(2π)MdetRk??1?×exp(?21?(yk??h(xk?,0))TRk?1?(yk??h(xk?,0)))
对等式两侧取对数:
ln
?
(
p
(
y
∣
x
)
p
(
x
∣
u
)
)
=
ln
?
p
(
x
0
∣
x
ˇ
0
)
+
∑
k
=
1
k
ln
?
p
(
x
k
∣
x
k
?
1
,
u
k
)
+
∑
k
=
0
k
ln
?
p
(
y
k
∣
x
k
)
\ln \left( p\left( y| x\right) p\left( x|u\right) \right) =\ln p\left( x_{0}| \check{x}_{0}\right) +\sum ^{k}_{k=1}\ln p\left( x_{k}| x_{k-1},u_{k}\right) +\sum ^{k}_{k=0}\ln p\left( y_{k}| x_{k}\right)
ln(p(y∣x)p(x∣u))=lnp(x0?∣xˇ0?)+k=1∑k?lnp(xk?∣xk?1?,uk?)+k=0∑k?lnp(yk?∣xk?)
ln
?
p
(
x
0
∣
x
ˇ
0
)
=
?
1
2
(
x
0
?
x
ˇ
0
)
T
P
0
?
1
(
x
0
?
x
ˇ
0
)
?
1
2
ln
?
(
(
2
π
)
N
det
?
P
ˇ
0
)
?
与
x
无关
\ln p\left( x_{0}| \check{x}_{0}\right) =-\dfrac{1}{2}\left( x_{0}-\check{x}_{0}\right) ^{T}P_{0}^{-1}\left( x_{0}-\check{x}_{0}\right) -\underbrace{\dfrac{1}{2}\ln \left( \left( 2\pi \right) ^{N}\det \check{P}_{0}\right)}_{与x无关}
lnp(x0?∣xˇ0?)=?21?(x0??xˇ0?)TP0?1?(x0??xˇ0?)?与x无关
21?ln((2π)NdetPˇ0?)??
ln
?
p
(
x
k
∣
x
k
?
1
,
u
k
)
=
?
1
2
(
x
k
?
f
(
x
k
?
1
,
u
k
,
0
)
)
T
Q
k
?
1
(
x
k
?
f
(
x
k
?
1
,
u
k
,
0
)
)
?
1
2
ln
?
(
(
2
π
)
N
det
?
Q
k
)
?
与
x
无关
\ln p\left( x_{k}| x_{k-1},u_{k}\right) =-\dfrac{1}{2}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) ^{T}Q_{k}^{-1}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) -\underbrace{\dfrac{1}{2}\ln \left( \left( 2\pi \right) ^{N}\det Q_{k}\right)}_{与x无关}
lnp(xk?∣xk?1?,uk?)=?21?(xk??f(xk?1?,uk?,0))TQk?1?(xk??f(xk?1?,uk?,0))?与x无关
21?ln((2π)NdetQk?)??
ln
?
p
(
y
k
∣
x
k
)
=
?
1
2
(
y
k
?
h
(
x
k
,
0
)
)
π
R
k
?
1
(
y
k
?
h
(
x
k
,
0
)
)
?
1
2
ln
?
(
(
2
π
)
M
det
?
R
k
)
?
与
x
无关
\ln p\left( y _{k}| x_{k}\right) =-\dfrac{1}{2}\left( y_{k}-h\left( x_{k},0\right) \right) ^{\pi }R_{k}^{-1}\left( y_{k}-h\left( x_{k},0\right) \right) -\underbrace{\dfrac{1}{2}\ln \left( \left( 2\pi \right) ^{M}\det R_{k}\right)}_{与x无关}
lnp(yk?∣xk?)=?21?(yk??h(xk?,0))πRk?1?(yk??h(xk?,0))?与x无关
21?ln((2π)MdetRk?)??
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!