批量估计问题

2023-12-31 15:36:07

最大后验估计MAP
x ^ = arg ? max ? x p ( x ∣ u , y ) \hat{x}=\arg \max _{x}p\left( x|u,y\right) x^=argxmax?p(xu,y)
我们希望在给定先验信息和所有时刻的输入 u u u和观测 y y y,推断出所有时刻的最优状态 x ^ \hat{x} x^。为此我们定义几个宏观变量。
x = x 0 : K = ( x 0 , ? ? , x K ) u = ( x ˇ 0 , u 1 : k ) = ( x ˇ 0 , u 1 , ? ? , u K ) y = y 0 : K = ( y 0 , ? ? , y K ) \begin{aligned} x&=x_{0:K}=\left( x_{0},\cdots ,x_{K}\right) \\ u&=(\check{x}_{0},u_{1:k}) =\left( \check{x}_{0},u_{1},\cdots ,u_{K}\right)\\ y&=y_{0:K}=\left( y_{0},\cdots ,y_{K}\right) \end{aligned} xuy?=x0:K?=(x0?,?,xK?)=(xˇ0?,u1:k?)=(xˇ0?,u1?,?,uK?)=y0:K?=(y0?,?,yK?)?
用贝叶斯公式重写MAP估计:
x ^ = arg ? max ? x p ( x ∣ u , y ) = arg ? max ? x p ( y ∣ x , u ) p ( x ∣ u ) p ( y ∣ u ) = arg ? max ? x p ( y ∣ x ) p ( x ∣ u ) \hat{x}=\arg \max _{x}p\left( x| u,y\right) =\arg \max _{x}\dfrac{p\left( y|x,u\right) p\left( x|u\right) }{p\left( y| u\right) }=\arg \max _{x}p\left( y| x\right) p\left( x| u\right) x^=argxmax?p(xu,y)=argxmax?p(yu)p(yx,u)p(xu)?=argxmax?p(yx)p(xu)
这里我们吧分母略去,因为它与 x x x无关。同时省略 p ( y ∣ x , u ) p(y|x,u) p(yx,u)中的 u u u,因为如果 x x x已知,它不会影响观测数据(观测方程与它无关)。
接下来我们做出一个重要假设:对于所有时刻 k = 0 , ? ? , K k=0,\cdots,K k=0,?,K,所有噪声项 w k w_k wk? n k n_k nk?之间是无关的,即 y k y_k yk?只与 x k x_k xk?有关,则可以用乘法公式对 p ( y ∣ x ) p(y|x) p(yx)进行因子分解:
p ( y ∣ x ) = p ( y 0 ∣ x 0 : K ) p ( y 1 ∣ x 0 : K , y 0 ) ? p ( y k ∣ x 0 : K , y 0 : K ? 1 ) = ∏ k = 0 K p ( y k ∣ x k ) \begin{aligned} p\left( y| x\right) &=p\left( y_{0}| x_{0:K}\right) p\left( y_{1}| x_{0:K},y_{0}\right) \cdots p\left( y_{k}| x_{0:K},y_{0:K-1}\right) \\ &=\prod ^{K}_{k=0}p\left( y_{k}| x_{k}\right) \end{aligned} p(yx)?=p(y0?x0:K?)p(y1?x0:K?,y0?)?p(yk?x0:K?,y0:K?1?)=k=0K?p(yk?xk?)?
同理, x k x_k xk?只与 x k ? 1 , u k x_{k-1},u_k xk?1?,uk? 有关,可得:
p ( x ∣ u ) = p ( x 0 ∣ u ) p ( x 1 ∣ u , x 0 ) … p ( x K ∣ u , x 0 : K ? 1 ) = p ( x 0 ∣ x ˇ 0 ) ∏ k = 1 K p ( x k ∣ x k ? 1 , u k ) \begin{aligned} p\left( x| u\right) &=p\left( x_{0}| u\right) p\left( x_{1}| u,x_{0}\right) \ldots p\left( x_{K}| u,x_{0:K-1}\right) \\ &=p\left( x_{0}| \check{x}_{0}\right) \prod ^{K}_{k=1}p\left( x_{k}| x_{k-1},u_{k}\right) \end{aligned} p(xu)?=p(x0?u)p(x1?u,x0?)p(xK?u,x0:K?1?)=p(x0?xˇ0?)k=1K?p(xk?xk?1?,uk?)?

p ( x 0 ∣ x ˇ 0 ) = 1 ( 2 π ) N det ? P ˇ 0 × exp ? ( ? 1 2 ( x 0 ? x ˇ 0 ) T P ˇ 0 ? 1 ( x 0 ? x ˇ 0 ) ) p\left( x_{0}| \check{x}_{0}\right) =\dfrac{1}{\sqrt{\left( 2\pi \right) ^{N}\det \check{P}_{0}}}\times \exp \left( -\dfrac{1}{2}\left( x_{0}-\check{x}_{0}\right) ^{T}\check{P}_{0}^{-1}\left( x_{0}-\check{x}_{0}\right) \right) p(x0?xˇ0?)=(2π)NdetPˇ0? ?1?×exp(?21?(x0??xˇ0?)TPˇ0?1?(x0??xˇ0?))

p ( x k ∣ x k ? 1 , u k ) = 1 ( 2 π ) N det ? Q k × exp ? ( ? 1 2 ( x k ? f ( x k ? 1 , u k , 0 ) ) T Q k ? 1 ( x k ? f ( x k ? 1 , u k , 0 ) ) ) p\left( x_{k}| x_{k-1},u_{k}\right) =\dfrac{1}{\sqrt{\left( 2\pi \right) ^{N}\det Q_{k}}}\times \exp \left( -\dfrac{1}{2}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) ^{T}Q_{k}^{-1}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) \right) p(xk?xk?1?,uk?)=(2π)NdetQk? ?1?×exp(?21?(xk??f(xk?1?,uk?,0))TQk?1?(xk??f(xk?1?,uk?,0)))

p ( y k ∣ x k ) = 1 ( 2 π ) M det ? R k × exp ? ( ? 1 2 ( y k ? h ( x k , 0 ) ) T R k ? 1 ( y k ? h ( x k , 0 ) ) ) p\left( y_{k}| x_{k}\right) =\dfrac{1}{\sqrt{\left( 2\pi \right) ^{M}\det R_{k}}}\times \exp \left( -\dfrac{1}{2}\left( y_{k}-h\left( x_{k},0\right) \right) ^{T}R_{k}^{-1}\left( y_{k}-h\left( x_{k},0\right) \right) \right) p(yk?xk?)=(2π)MdetRk? ?1?×exp(?21?(yk??h(xk?,0))TRk?1?(yk??h(xk?,0)))
对等式两侧取对数:
ln ? ( p ( y ∣ x ) p ( x ∣ u ) ) = ln ? p ( x 0 ∣ x ˇ 0 ) + ∑ k = 1 k ln ? p ( x k ∣ x k ? 1 , u k ) + ∑ k = 0 k ln ? p ( y k ∣ x k ) \ln \left( p\left( y| x\right) p\left( x|u\right) \right) =\ln p\left( x_{0}| \check{x}_{0}\right) +\sum ^{k}_{k=1}\ln p\left( x_{k}| x_{k-1},u_{k}\right) +\sum ^{k}_{k=0}\ln p\left( y_{k}| x_{k}\right) ln(p(yx)p(xu))=lnp(x0?xˇ0?)+k=1k?lnp(xk?xk?1?,uk?)+k=0k?lnp(yk?xk?)

ln ? p ( x 0 ∣ x ˇ 0 ) = ? 1 2 ( x 0 ? x ˇ 0 ) T P 0 ? 1 ( x 0 ? x ˇ 0 ) ? 1 2 ln ? ( ( 2 π ) N det ? P ˇ 0 ) ? 与 x 无关 \ln p\left( x_{0}| \check{x}_{0}\right) =-\dfrac{1}{2}\left( x_{0}-\check{x}_{0}\right) ^{T}P_{0}^{-1}\left( x_{0}-\check{x}_{0}\right) -\underbrace{\dfrac{1}{2}\ln \left( \left( 2\pi \right) ^{N}\det \check{P}_{0}\right)}_{与x无关} lnp(x0?xˇ0?)=?21?(x0??xˇ0?)TP0?1?(x0??xˇ0?)?x无关 21?ln((2π)NdetPˇ0?)??
ln ? p ( x k ∣ x k ? 1 , u k ) = ? 1 2 ( x k ? f ( x k ? 1 , u k , 0 ) ) T Q k ? 1 ( x k ? f ( x k ? 1 , u k , 0 ) ) ? 1 2 ln ? ( ( 2 π ) N det ? Q k ) ? 与 x 无关 \ln p\left( x_{k}| x_{k-1},u_{k}\right) =-\dfrac{1}{2}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) ^{T}Q_{k}^{-1}\left( x_{k}-f\left( x_{k-1},u_{k},0\right) \right) -\underbrace{\dfrac{1}{2}\ln \left( \left( 2\pi \right) ^{N}\det Q_{k}\right)}_{与x无关} lnp(xk?xk?1?,uk?)=?21?(xk??f(xk?1?,uk?,0))TQk?1?(xk??f(xk?1?,uk?,0))?x无关 21?ln((2π)NdetQk?)??
ln ? p ( y k ∣ x k ) = ? 1 2 ( y k ? h ( x k , 0 ) ) π R k ? 1 ( y k ? h ( x k , 0 ) ) ? 1 2 ln ? ( ( 2 π ) M det ? R k ) ? 与 x 无关 \ln p\left( y _{k}| x_{k}\right) =-\dfrac{1}{2}\left( y_{k}-h\left( x_{k},0\right) \right) ^{\pi }R_{k}^{-1}\left( y_{k}-h\left( x_{k},0\right) \right) -\underbrace{\dfrac{1}{2}\ln \left( \left( 2\pi \right) ^{M}\det R_{k}\right)}_{与x无关} lnp(yk?xk?)=?21?(yk??h(xk?,0))πRk?1?(yk??h(xk?,0))?x无关 21?ln((2π)MdetRk?)??

文章来源:https://blog.csdn.net/wsl_longwudi/article/details/128505805
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。