flink on k8s几种创建方式

2024-01-03 18:58:36

在此之前需要部署一下私人docker仓库,教程搭建 Docker 镜像仓库

注意:每台节点的daemon.json都需要配置"insecure-registries": ["http://主机IP:8080"] 并重启

一、session 模式

Session 模式是指在 Kubernetes 上启动一个共享的 Flink 集群(由 JobManager 和多个 TaskManagers 组成),然后多个 Flink 作业可以提交到这个共享集群上运行。这个模式下的集群会长期运行,直到用户手动停止它。这种模式适合多个作业需要频繁启动和停止,且对集群资源的利用率要求较高的场景。


Kubernetes 中的 Flink Session 集群部署至少包含三个组件:

  • 运行JobManager的部署

  • TaskManagers池的部署

  • 暴露JobManager的 REST 和 UI 端口的服务

1.1?Native Kubernetes 模式

Flink 的 Native Kubernetes 模式允许用户将 Apache Flink 无缝集成至 Kubernetes 环境中,实现在 Kubernetes 上运行 Flink 作业和应用程序。这种模式的主要优点是 Flink 能够利用 Kubernetes 提供的资源编排和管理能力,简化 Flink 集群的部署和管理。

在 Native Kubernetes 模式下,Flink 集群的部署和管理是通过 Flink 的 Kubernetes Operator 或者是直接使用 kubectl 命令行工具来完成的。Flink 的每个组件都被作为 Kubernetes 资源(如Pods, Services等)来管理。

1.1.1 构建镜像 Dockerfile

1.创建dockerfile

FROM flink:1.16.2
RUN rm -f /etc/localtime && ln -sv /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo "Asia/Shanghai" > /etc/timezone
RUN export LANG=zh_CN.UTF-8


2.开始构建镜像
docker build -t  192.168.20.62:2333/bigdata/flink-session:1.16.2

3.上传镜像
docker push 192.168.20.62:2333/bigdata/flink-session:1.16.2

1.1.2?创建命名空间和 serviceaccount

# 创建namespace
kubectl create ns flink

# 创建serviceaccount
kubectl create serviceaccount flink-service-account -n flink

# 用户授权
kubectl create clusterrolebinding flink-role-binding-flink --clusterrole=edit --serviceaccount=flink:flink-service-account

1.1.3?创建 flink 集群

./bin/kubernetes-session.sh \
-Dkubernetes.cluster-id=my-first-flink-cluster  \
-Dkubernetes.container.image=192.168.20.62:2333/bigdata/flink-session:1.16.2 \
-Dkubernetes.namespace=flink \
-Dkubernetes.jobmanager.service-account=flink-service-account \
-Dkubernetes.rest-service.exposed.type=NodePort

1.1.4 提交任务

./bin/flink run \
--target kubernetes-session \
-Dkubernetes.cluster-id=my-first-flink-cluster \
-Dkubernetes.namespace=flink \
-Dkubernetes.jobmanager.service-account=flink-service-account \
./examples/streaming/TopSpeedWindowing.jar \
-Dkubernetes.taskmanager.cpu=2000m \
-Dexternal-resource.limits.kubernetes.cpu=4000m \
-Dexternal-resource.limits.kubernetes.memory=10Gi \
-Dexternal-resource.requests.kubernetes.cpu=2000m \
-Dexternal-resource.requests.kubernetes.memory=8Gi \
-Dkubernetes.taskmanager.cpu=2000m \

1.1.5?删除 flink 集群

kubectl delete deployment/my-first-flink-cluster -n flink
kubectl delete ns flink --force

1.2?Standalone 模式

Standalone 模式通常指的是在 Kubernetes 集群上运行 Flink 的一个单独集群环境,但它不是专门为 Kubernetes 设计的。在 Kubernetes 上使用 Standalone 模式意味着你将手动设置 Flink 集群(包括 JobManager 和 TaskManagers),而不是通过 Kubernetes Operator 或者其他 Kubernetes 原生的资源调度和管理机制。换句话说,在这个模式下,Flink 集群的各个组件(JobManager和TaskManagers)运行在 Kubernetes Pod 中,但是它们的生命周期管理并不是通过 Kubernetes 原生的支持来实现的,而是类似于在任何其他环境中部署 Flink 的传统方式。

1.2.1 创建docker-entrypoint.sh脚本

#!/usr/bin/env bash

###############################################################################
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################

COMMAND_STANDALONE="standalone-job"
COMMAND_HISTORY_SERVER="history-server"

# If unspecified, the hostname of the container is taken as the JobManager address
JOB_MANAGER_RPC_ADDRESS=${JOB_MANAGER_RPC_ADDRESS:-$(hostname -f)}
CONF_FILE="${FLINK_HOME}/conf/flink-conf.yaml"

drop_privs_cmd() {
    if [ $(id -u) != 0 ]; then
        # Don't need to drop privs if EUID != 0
        return
    elif [ -x /sbin/su-exec ]; then
        # Alpine
        echo su-exec admin
    else
        # Others
        echo gosu admin
    fi
}

copy_plugins_if_required() {
  if [ -z "$ENABLE_BUILT_IN_PLUGINS" ]; then
    return 0
  fi

  echo "Enabling required built-in plugins"
  for target_plugin in $(echo "$ENABLE_BUILT_IN_PLUGINS" | tr ';' ' '); do
    echo "Linking ${target_plugin} to plugin directory"
    plugin_name=${target_plugin%.jar}

    mkdir -p "${FLINK_HOME}/plugins/${plugin_name}"
    if [ ! -e "${FLINK_HOME}/opt/${target_plugin}" ]; then
      echo "Plugin ${target_plugin} does not exist. Exiting."
      exit 1
    else
      ln -fs "${FLINK_HOME}/opt/${target_plugin}" "${FLINK_HOME}/plugins/${plugin_name}"
      echo "Successfully enabled ${target_plugin}"
    fi
  done
}

set_config_option() {
  local option=$1
  local value=$2

  # escape periods for usage in regular expressions
  local escaped_option=$(echo ${option} | sed -e "s/\./\\\./g")

  # either override an existing entry, or append a new one
  if grep -E "^${escaped_option}:.*" "${CONF_FILE}" > /dev/null; then
        sed -i -e "s/${escaped_option}:.*/$option: $value/g" "${CONF_FILE}"
  else
        echo "${option}: ${value}" >> "${CONF_FILE}"
  fi
}

prepare_configuration() {
    set_config_option jobmanager.rpc.address ${JOB_MANAGER_RPC_ADDRESS}
    set_config_option blob.server.port 6124
    set_config_option query.server.port 6125

    if [ -n "${TASK_MANAGER_NUMBER_OF_TASK_SLOTS}" ]; then
        set_config_option taskmanager.numberOfTaskSlots ${TASK_MANAGER_NUMBER_OF_TASK_SLOTS}
    fi

    if [ -n "${FLINK_PROPERTIES}" ]; then
        echo "${FLINK_PROPERTIES}" >> "${CONF_FILE}"
    fi
    envsubst < "${CONF_FILE}" > "${CONF_FILE}.tmp" && mv "${CONF_FILE}.tmp" "${CONF_FILE}"
}

maybe_enable_jemalloc() {
    if [ "${DISABLE_JEMALLOC:-false}" == "false" ]; then
        JEMALLOC_PATH="/usr/lib/$(uname -m)-linux-gnu/libjemalloc.so"
        JEMALLOC_FALLBACK="/usr/lib/x86_64-linux-gnu/libjemalloc.so"
        if [ -f "$JEMALLOC_PATH" ]; then
            export LD_PRELOAD=$LD_PRELOAD:$JEMALLOC_PATH
        elif [ -f "$JEMALLOC_FALLBACK" ]; then
            export LD_PRELOAD=$LD_PRELOAD:$JEMALLOC_FALLBACK
        else
            if [ "$JEMALLOC_PATH" = "$JEMALLOC_FALLBACK" ]; then
                MSG_PATH=$JEMALLOC_PATH
            else
                MSG_PATH="$JEMALLOC_PATH and $JEMALLOC_FALLBACK"
            fi
            echo "WARNING: attempted to load jemalloc from $MSG_PATH but the library couldn't be found. glibc will be used instead."
        fi
    fi
}

maybe_enable_jemalloc

copy_plugins_if_required

prepare_configuration

args=("$@")
if [ "$1" = "help" ]; then
    printf "Usage: $(basename "$0") (jobmanager|${COMMAND_STANDALONE}|taskmanager|${COMMAND_HISTORY_SERVER})\n"
    printf "    Or $(basename "$0") help\n\n"
    printf "By default, Flink image adopts jemalloc as default memory allocator. This behavior can be disabled by setting the 'DISABLE_JEMALLOC' environment variable to 'true'.\n"
    exit 0
elif [ "$1" = "jobmanager" ]; then
    args=("${args[@]:1}")

    echo "Starting Job Manager"

    exec $(drop_privs_cmd) "$FLINK_HOME/bin/jobmanager.sh" start-foreground "${args[@]}"
elif [ "$1" = ${COMMAND_STANDALONE} ]; then
    args=("${args[@]:1}")

    echo "Starting Job Manager"

    exec $(drop_privs_cmd) "$FLINK_HOME/bin/standalone-job.sh" start-foreground "${args[@]}"
elif [ "$1" = ${COMMAND_HISTORY_SERVER} ]; then
    args=("${args[@]:1}")

    echo "Starting History Server"

    exec $(drop_privs_cmd) "$FLINK_HOME/bin/historyserver.sh" start-foreground "${args[@]}"
elif [ "$1" = "taskmanager" ]; then
    args=("${args[@]:1}")

    echo "Starting Task Manager"

    exec $(drop_privs_cmd) "$FLINK_HOME/bin/taskmanager.sh" start-foreground "${args[@]}"
fi

args=("${args[@]}")

# Running command in pass-through mode
exec $(drop_privs_cmd) "${args[@]}"

1.2.2?编排 Dockerfile

FROM centos:7.9.2009

USER root

# 安装常用工具
RUN yum install -y vim tar wget curl rsync bzip2 iptables tcpdump less telnet net-tools lsof

# 设置时区,默认是UTC时区
RUN rm -f /etc/localtime && ln -sv /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo "Asia/Shanghai" > /etc/timezone

RUN mkdir -p /opt/apache

ADD jdk-8u231-linux-x64.tar.gz /opt/apache/

ADD flink-1.16.2-bin-scala_2.12.tgz  /opt/apache/

ENV FLINK_HOME /opt/apache/flink-1.16.2
ENV JAVA_HOME /opt/apache/jdk1.8.0_231
ENV PATH $JAVA_HOME/bin:$PATH

# 创建用户应用jar目录
RUN mkdir $FLINK_HOME/usrlib/

#RUN mkdir home
COPY docker-entrypoint.sh /opt/apache/
RUN chmod +x /opt/apache/docker-entrypoint.sh

RUN groupadd --system --gid=9999 admin && useradd --system --home-dir $FLINK_HOME --uid=9999 --gid=admin admin

RUN chown -R admin:admin /opt/apache

#设置的工作目录
WORKDIR $FLINK_HOME

# 对外暴露端口
EXPOSE 6123 8081

# 执行脚本,构建镜像时不执行,运行实例才会执行
ENTRYPOINT ["/opt/apache/docker-entrypoint.sh"]
CMD ["help"]

1.2.3?开始构建镜像

docker build -t 192.168.20.62:2333/bigdata/flink-centos-admin:1.16.2 . --no-cache

# 上传镜像
docker push 192.168.20.62:2333/bigdata/flink-centos-admin:1.16.2

1.2.4?创建命名空间和 serviceaccount

# 创建namespace
kubectl create ns flink

# 创建serviceaccount
kubectl create serviceaccount flink-service-account -n flink

# 用户授权
kubectl create clusterrolebinding flink-role-binding-flink --clusterrole=edit --serviceaccount=flink:flink-service-account

1.2.5?编排 yaml 文件

1.2.5.1??flink-configuration-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: flink-config
  labels:
    app: flink
data:
  flink-conf.yaml: |+
    jobmanager.rpc.address: flink-jobmanager
    taskmanager.numberOfTaskSlots: 2
    blob.server.port: 6124
    jobmanager.rpc.port: 6123
    taskmanager.rpc.port: 6122
    queryable-state.proxy.ports: 6125
    jobmanager.memory.process.size: 3200m
    taskmanager.memory.process.size: 2728m
    taskmanager.memory.flink.size: 2280m
    parallelism.default: 2
  log4j-console.properties: |+
    # This affects logging for both user code and Flink
    rootLogger.level = INFO
    rootLogger.appenderRef.console.ref = ConsoleAppender
    rootLogger.appenderRef.rolling.ref = RollingFileAppender

    # Uncomment this if you want to _only_ change Flink's logging
    #logger.flink.name = org.apache.flink
    #logger.flink.level = INFO

    # The following lines keep the log level of common libraries/connectors on
    # log level INFO. The root logger does not override this. You have to manually
    # change the log levels here.
    logger.akka.name = akka
    logger.akka.level = INFO
    logger.kafka.name= org.apache.kafka
    logger.kafka.level = INFO
    logger.hadoop.name = org.apache.hadoop
    logger.hadoop.level = INFO
    logger.zookeeper.name = org.apache.zookeeper
    logger.zookeeper.level = INFO

    # Log all infos to the console
    appender.console.name = ConsoleAppender
    appender.console.type = CONSOLE
    appender.console.layout.type = PatternLayout
    appender.console.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n

    # Log all infos in the given rolling file
    appender.rolling.name = RollingFileAppender
    appender.rolling.type = RollingFile
    appender.rolling.append = false
    appender.rolling.fileName = ${sys:log.file}
    appender.rolling.filePattern = ${sys:log.file}.%i
    appender.rolling.layout.type = PatternLayout
    appender.rolling.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
    appender.rolling.policies.type = Policies
    appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
    appender.rolling.policies.size.size=100MB
    appender.rolling.strategy.type = DefaultRolloverStrategy
    appender.rolling.strategy.max = 10

    # Suppress the irrelevant (wrong) warnings from the Netty channel handler
    logger.netty.name = org.jboss.netty.channel.DefaultChannelPipeline
    logger.netty.level = OFF
1.2.5.2?jobmanager-service.yaml
apiVersion: v1
kind: Service
metadata:
  name: flink-jobmanager
spec:
  type: ClusterIP
  ports:
  - name: rpc
    port: 6123
  - name: blob-server
    port: 6124
  - name: webui
    port: 8081
  selector:
    app: flink
    component: jobmanager
1.2.5.3?jobmanager-rest-service.yaml

将 jobmanager rest端口公开为公共 Kubernetes 节点的端口

apiVersion: v1
kind: Service
metadata:
  name: flink-jobmanager-rest
spec:
  type: NodePort
  ports:
  - name: rest
    port: 8081
    targetPort: 8081
    nodePort: 30081
  selector:
    app: flink
    component: jobmanager
1.2.5.4?taskmanager-query-state-service.yaml

公开 TaskManager 端口以访问可查询状态作为公共 Kubernetes 节点的端口

apiVersion: v1
kind: Service
metadata:
  name: flink-taskmanager-query-state
spec:
  type: NodePort
  ports:
  - name: query-state
    port: 6125
    targetPort: 6125
    nodePort: 30025
  selector:
    app: flink
    component: taskmanager
1.2.5.5? jobmanager-session-deployment-non-ha.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: flink-jobmanager
spec:
  replicas: 1
  selector:
    matchLabels:
      app: flink
      component: jobmanager
  template:
    metadata:
      labels:
        app: flink
        component: jobmanager
    spec:
      containers:
      - name: jobmanager
        image: 192.168.20.62:2333/bigdata/flink-centos-admin:1.16.2
        args: ["jobmanager"]
        ports:
        - containerPort: 6123
          name: rpc
        - containerPort: 6124
          name: blob-server
        - containerPort: 8081
          name: webui
        livenessProbe:
          tcpSocket:
            port: 6123
          initialDelaySeconds: 30
          periodSeconds: 60
        volumeMounts:
        - name: flink-config-volume
          mountPath: /opt/apache/flink-1.16.2/conf/
        securityContext:
          runAsUser: 9999  # refers to user _flink_ from official flink image, change if necessary
      volumes:
      - name: flink-config-volume
        configMap:
          name: flink-config
          items:
          - key: flink-conf.yaml
            path: flink-conf.yaml
          - key: log4j-console.properties
            path: log4j-console.properties
1.2.5.6??taskmanager-session-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: flink-taskmanager
spec:
  replicas: 2
  selector:
    matchLabels:
      app: flink
      component: taskmanager
  template:
    metadata:
      labels:
        app: flink
        component: taskmanager
    spec:
      containers:
      - name: taskmanager
        image: 192.168.20.62:2333/bigdata/flink-centos-admin:1.16.2
        args: ["taskmanager"]
        ports:
        - containerPort: 6122
          name: rpc
        - containerPort: 6125
          name: query-state
        livenessProbe:
          tcpSocket:
            port: 6122
          initialDelaySeconds: 30
          periodSeconds: 60
        volumeMounts:
        - name: flink-config-volume
          mountPath: /opt/apache/flink-1.16.2/conf/
        securityContext:
          runAsUser: 9999  # refers to user _flink_ from official flink image, change if necessary
      volumes:
      - name: flink-config-volume
        configMap:
          name: flink-config
          items:
          - key: flink-conf.yaml
            path: flink-conf.yaml
          - key: log4j-console.properties
            path: log4j-console.properties

1.2.6?创建 flink 集群

kubectl create ns flink
# Configuration and service definition
kubectl create -f flink-configuration-configmap.yaml -n flink

# service
kubectl create -f jobmanager-service.yaml -n flink
kubectl create -f jobmanager-rest-service.yaml -n flink
kubectl create -f taskmanager-query-state-service.yaml -n flink

# Create the deployments for the cluster
kubectl create -f jobmanager-session-deployment-non-ha.yaml -n flink
kubectl create -f taskmanager-session-deployment.yaml -n flink

1.2.7?提交任务

./bin/flink run -m 192.168.20.62:30081 ./examples/streaming/TopSpeedWindowing.jar

1.2.8 删除集群

kubectl delete -f jobmanager-service.yaml -n flink
kubectl delete -f flink-configuration-configmap.yaml -n flink
kubectl delete -f taskmanager-session-deployment.yaml -n flink
kubectl delete -f jobmanager-session-deployment.yaml -n flink
kubectl delete ns flink --force

二 、application 模式(推荐)

Kubernetes 中一个基本的 Flink Application 集群部署包含三个组件

  • 运行JobManager的应用程序

  • TaskManagers池的部署

  • 暴露JobManager的 REST 和 UI 端口的服务

2.1 Native Kubernetes 模式(常用)

2.1.1?构建镜像 Dockerfile

FROM flink:1.16.2
RUN rm -f /etc/localtime && ln -sv /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo "Asia/Shanghai" > /etc/timezone
RUN export LANG=zh_CN.UTF-8
RUN mkdir -p $FLINK_HOME/usrlib
COPY   ./flink-1.16.2/examples/streaming/TopSpeedWindowing.jar /opt/flink/usrlib/



开始构建镜像

docker build -t 192.168.20.62:2333/bigdata/flink-application:1.16.2 . --no-cache
docker push  192.168.20.62:2333/bigdata/flink-application:1.16.2

2.1.2?创建命名空间和 serviceacount

# 创建namespace
kubectl create ns flink
# 创建serviceaccount
kubectl create serviceaccount flink-service-account -n flink
# 用户授权
kubectl create clusterrolebinding flink-role-binding-flink --clusterrole=edit --serviceaccount=flink:flink-service-account

2.1.3?创建 flink 集群并提交任务

./bin/flink run-application \
 --target kubernetes-application \
 -Dkubernetes.cluster-id=my-first-application-cluster  \
 -Dkubernetes.container.image=192.168.20.62:2333/bigdata/flink-application:1.16.2 \
 -Dkubernetes.jobmanager.replicas=1 \
 -Dkubernetes.namespace=flink \
 -Dkubernetes.jobmanager.service-account=flink-service-account \
 -Dexternal-resource.limits.kubernetes.cpu=2000m \
 -Dexternal-resource.limits.kubernetes.memory=2Gi \
 -Dexternal-resource.requests.kubernetes.cpu=1000m \
 -Dexternal-resource.requests.kubernetes.memory=1Gi \
 -Dkubernetes.rest-service.exposed.type=NodePort \
 local:///opt/flink/usrlib/TopSpeedWindowing.jar

local是application模式中唯一支持的方案。local 代表本地环境,这里即 pod 或者容器环境,并非宿主机。

2.1.4?删除 flink 集群

kubectl delete deployment/my-first-application-cluster -n flink
kubectl delete ns flink --force

2.2?Standalone 模式(待定)

文章来源:https://blog.csdn.net/weixin_45249411/article/details/135359293
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。