flink on k8s几种创建方式
在此之前需要部署一下私人docker仓库,教程搭建 Docker 镜像仓库
注意:每台节点的daemon.json都需要配置"insecure-registries": ["http://主机IP:8080"] 并重启
一、session 模式
Session 模式是指在 Kubernetes 上启动一个共享的 Flink 集群(由 JobManager 和多个 TaskManagers 组成),然后多个 Flink 作业可以提交到这个共享集群上运行。这个模式下的集群会长期运行,直到用户手动停止它。这种模式适合多个作业需要频繁启动和停止,且对集群资源的利用率要求较高的场景。
Kubernetes 中的 Flink Session 集群部署至少包含三个组件:
-
运行
JobManager
的部署 -
TaskManagers
池的部署 -
暴露
JobManager
的 REST 和 UI 端口的服务
1.1?Native Kubernetes 模式
Flink 的 Native Kubernetes 模式允许用户将 Apache Flink 无缝集成至 Kubernetes 环境中,实现在 Kubernetes 上运行 Flink 作业和应用程序。这种模式的主要优点是 Flink 能够利用 Kubernetes 提供的资源编排和管理能力,简化 Flink 集群的部署和管理。
在 Native Kubernetes 模式下,Flink 集群的部署和管理是通过 Flink 的 Kubernetes Operator 或者是直接使用 kubectl
命令行工具来完成的。Flink 的每个组件都被作为 Kubernetes 资源(如Pods, Services等)来管理。
1.1.1 构建镜像 Dockerfile
1.创建dockerfile
FROM flink:1.16.2
RUN rm -f /etc/localtime && ln -sv /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo "Asia/Shanghai" > /etc/timezone
RUN export LANG=zh_CN.UTF-8
2.开始构建镜像
docker build -t 192.168.20.62:2333/bigdata/flink-session:1.16.2
3.上传镜像
docker push 192.168.20.62:2333/bigdata/flink-session:1.16.2
1.1.2?创建命名空间和 serviceaccount
# 创建namespace
kubectl create ns flink
# 创建serviceaccount
kubectl create serviceaccount flink-service-account -n flink
# 用户授权
kubectl create clusterrolebinding flink-role-binding-flink --clusterrole=edit --serviceaccount=flink:flink-service-account
1.1.3?创建 flink 集群
./bin/kubernetes-session.sh \
-Dkubernetes.cluster-id=my-first-flink-cluster \
-Dkubernetes.container.image=192.168.20.62:2333/bigdata/flink-session:1.16.2 \
-Dkubernetes.namespace=flink \
-Dkubernetes.jobmanager.service-account=flink-service-account \
-Dkubernetes.rest-service.exposed.type=NodePort
1.1.4 提交任务
./bin/flink run \
--target kubernetes-session \
-Dkubernetes.cluster-id=my-first-flink-cluster \
-Dkubernetes.namespace=flink \
-Dkubernetes.jobmanager.service-account=flink-service-account \
./examples/streaming/TopSpeedWindowing.jar \
-Dkubernetes.taskmanager.cpu=2000m \
-Dexternal-resource.limits.kubernetes.cpu=4000m \
-Dexternal-resource.limits.kubernetes.memory=10Gi \
-Dexternal-resource.requests.kubernetes.cpu=2000m \
-Dexternal-resource.requests.kubernetes.memory=8Gi \
-Dkubernetes.taskmanager.cpu=2000m \
1.1.5?删除 flink 集群
kubectl delete deployment/my-first-flink-cluster -n flink
kubectl delete ns flink --force
1.2?Standalone 模式
Standalone 模式通常指的是在 Kubernetes 集群上运行 Flink 的一个单独集群环境,但它不是专门为 Kubernetes 设计的。在 Kubernetes 上使用 Standalone 模式意味着你将手动设置 Flink 集群(包括 JobManager 和 TaskManagers),而不是通过 Kubernetes Operator 或者其他 Kubernetes 原生的资源调度和管理机制。换句话说,在这个模式下,Flink 集群的各个组件(JobManager和TaskManagers)运行在 Kubernetes Pod 中,但是它们的生命周期管理并不是通过 Kubernetes 原生的支持来实现的,而是类似于在任何其他环境中部署 Flink 的传统方式。
1.2.1 创建docker-entrypoint.sh脚本
#!/usr/bin/env bash
###############################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
COMMAND_STANDALONE="standalone-job"
COMMAND_HISTORY_SERVER="history-server"
# If unspecified, the hostname of the container is taken as the JobManager address
JOB_MANAGER_RPC_ADDRESS=${JOB_MANAGER_RPC_ADDRESS:-$(hostname -f)}
CONF_FILE="${FLINK_HOME}/conf/flink-conf.yaml"
drop_privs_cmd() {
if [ $(id -u) != 0 ]; then
# Don't need to drop privs if EUID != 0
return
elif [ -x /sbin/su-exec ]; then
# Alpine
echo su-exec admin
else
# Others
echo gosu admin
fi
}
copy_plugins_if_required() {
if [ -z "$ENABLE_BUILT_IN_PLUGINS" ]; then
return 0
fi
echo "Enabling required built-in plugins"
for target_plugin in $(echo "$ENABLE_BUILT_IN_PLUGINS" | tr ';' ' '); do
echo "Linking ${target_plugin} to plugin directory"
plugin_name=${target_plugin%.jar}
mkdir -p "${FLINK_HOME}/plugins/${plugin_name}"
if [ ! -e "${FLINK_HOME}/opt/${target_plugin}" ]; then
echo "Plugin ${target_plugin} does not exist. Exiting."
exit 1
else
ln -fs "${FLINK_HOME}/opt/${target_plugin}" "${FLINK_HOME}/plugins/${plugin_name}"
echo "Successfully enabled ${target_plugin}"
fi
done
}
set_config_option() {
local option=$1
local value=$2
# escape periods for usage in regular expressions
local escaped_option=$(echo ${option} | sed -e "s/\./\\\./g")
# either override an existing entry, or append a new one
if grep -E "^${escaped_option}:.*" "${CONF_FILE}" > /dev/null; then
sed -i -e "s/${escaped_option}:.*/$option: $value/g" "${CONF_FILE}"
else
echo "${option}: ${value}" >> "${CONF_FILE}"
fi
}
prepare_configuration() {
set_config_option jobmanager.rpc.address ${JOB_MANAGER_RPC_ADDRESS}
set_config_option blob.server.port 6124
set_config_option query.server.port 6125
if [ -n "${TASK_MANAGER_NUMBER_OF_TASK_SLOTS}" ]; then
set_config_option taskmanager.numberOfTaskSlots ${TASK_MANAGER_NUMBER_OF_TASK_SLOTS}
fi
if [ -n "${FLINK_PROPERTIES}" ]; then
echo "${FLINK_PROPERTIES}" >> "${CONF_FILE}"
fi
envsubst < "${CONF_FILE}" > "${CONF_FILE}.tmp" && mv "${CONF_FILE}.tmp" "${CONF_FILE}"
}
maybe_enable_jemalloc() {
if [ "${DISABLE_JEMALLOC:-false}" == "false" ]; then
JEMALLOC_PATH="/usr/lib/$(uname -m)-linux-gnu/libjemalloc.so"
JEMALLOC_FALLBACK="/usr/lib/x86_64-linux-gnu/libjemalloc.so"
if [ -f "$JEMALLOC_PATH" ]; then
export LD_PRELOAD=$LD_PRELOAD:$JEMALLOC_PATH
elif [ -f "$JEMALLOC_FALLBACK" ]; then
export LD_PRELOAD=$LD_PRELOAD:$JEMALLOC_FALLBACK
else
if [ "$JEMALLOC_PATH" = "$JEMALLOC_FALLBACK" ]; then
MSG_PATH=$JEMALLOC_PATH
else
MSG_PATH="$JEMALLOC_PATH and $JEMALLOC_FALLBACK"
fi
echo "WARNING: attempted to load jemalloc from $MSG_PATH but the library couldn't be found. glibc will be used instead."
fi
fi
}
maybe_enable_jemalloc
copy_plugins_if_required
prepare_configuration
args=("$@")
if [ "$1" = "help" ]; then
printf "Usage: $(basename "$0") (jobmanager|${COMMAND_STANDALONE}|taskmanager|${COMMAND_HISTORY_SERVER})\n"
printf " Or $(basename "$0") help\n\n"
printf "By default, Flink image adopts jemalloc as default memory allocator. This behavior can be disabled by setting the 'DISABLE_JEMALLOC' environment variable to 'true'.\n"
exit 0
elif [ "$1" = "jobmanager" ]; then
args=("${args[@]:1}")
echo "Starting Job Manager"
exec $(drop_privs_cmd) "$FLINK_HOME/bin/jobmanager.sh" start-foreground "${args[@]}"
elif [ "$1" = ${COMMAND_STANDALONE} ]; then
args=("${args[@]:1}")
echo "Starting Job Manager"
exec $(drop_privs_cmd) "$FLINK_HOME/bin/standalone-job.sh" start-foreground "${args[@]}"
elif [ "$1" = ${COMMAND_HISTORY_SERVER} ]; then
args=("${args[@]:1}")
echo "Starting History Server"
exec $(drop_privs_cmd) "$FLINK_HOME/bin/historyserver.sh" start-foreground "${args[@]}"
elif [ "$1" = "taskmanager" ]; then
args=("${args[@]:1}")
echo "Starting Task Manager"
exec $(drop_privs_cmd) "$FLINK_HOME/bin/taskmanager.sh" start-foreground "${args[@]}"
fi
args=("${args[@]}")
# Running command in pass-through mode
exec $(drop_privs_cmd) "${args[@]}"
1.2.2?编排 Dockerfile
FROM centos:7.9.2009
USER root
# 安装常用工具
RUN yum install -y vim tar wget curl rsync bzip2 iptables tcpdump less telnet net-tools lsof
# 设置时区,默认是UTC时区
RUN rm -f /etc/localtime && ln -sv /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo "Asia/Shanghai" > /etc/timezone
RUN mkdir -p /opt/apache
ADD jdk-8u231-linux-x64.tar.gz /opt/apache/
ADD flink-1.16.2-bin-scala_2.12.tgz /opt/apache/
ENV FLINK_HOME /opt/apache/flink-1.16.2
ENV JAVA_HOME /opt/apache/jdk1.8.0_231
ENV PATH $JAVA_HOME/bin:$PATH
# 创建用户应用jar目录
RUN mkdir $FLINK_HOME/usrlib/
#RUN mkdir home
COPY docker-entrypoint.sh /opt/apache/
RUN chmod +x /opt/apache/docker-entrypoint.sh
RUN groupadd --system --gid=9999 admin && useradd --system --home-dir $FLINK_HOME --uid=9999 --gid=admin admin
RUN chown -R admin:admin /opt/apache
#设置的工作目录
WORKDIR $FLINK_HOME
# 对外暴露端口
EXPOSE 6123 8081
# 执行脚本,构建镜像时不执行,运行实例才会执行
ENTRYPOINT ["/opt/apache/docker-entrypoint.sh"]
CMD ["help"]
1.2.3?开始构建镜像
docker build -t 192.168.20.62:2333/bigdata/flink-centos-admin:1.16.2 . --no-cache
# 上传镜像
docker push 192.168.20.62:2333/bigdata/flink-centos-admin:1.16.2
1.2.4?创建命名空间和 serviceaccount
# 创建namespace
kubectl create ns flink
# 创建serviceaccount
kubectl create serviceaccount flink-service-account -n flink
# 用户授权
kubectl create clusterrolebinding flink-role-binding-flink --clusterrole=edit --serviceaccount=flink:flink-service-account
1.2.5?编排 yaml 文件
1.2.5.1??flink-configuration-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: flink-config
labels:
app: flink
data:
flink-conf.yaml: |+
jobmanager.rpc.address: flink-jobmanager
taskmanager.numberOfTaskSlots: 2
blob.server.port: 6124
jobmanager.rpc.port: 6123
taskmanager.rpc.port: 6122
queryable-state.proxy.ports: 6125
jobmanager.memory.process.size: 3200m
taskmanager.memory.process.size: 2728m
taskmanager.memory.flink.size: 2280m
parallelism.default: 2
log4j-console.properties: |+
# This affects logging for both user code and Flink
rootLogger.level = INFO
rootLogger.appenderRef.console.ref = ConsoleAppender
rootLogger.appenderRef.rolling.ref = RollingFileAppender
# Uncomment this if you want to _only_ change Flink's logging
#logger.flink.name = org.apache.flink
#logger.flink.level = INFO
# The following lines keep the log level of common libraries/connectors on
# log level INFO. The root logger does not override this. You have to manually
# change the log levels here.
logger.akka.name = akka
logger.akka.level = INFO
logger.kafka.name= org.apache.kafka
logger.kafka.level = INFO
logger.hadoop.name = org.apache.hadoop
logger.hadoop.level = INFO
logger.zookeeper.name = org.apache.zookeeper
logger.zookeeper.level = INFO
# Log all infos to the console
appender.console.name = ConsoleAppender
appender.console.type = CONSOLE
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
# Log all infos in the given rolling file
appender.rolling.name = RollingFileAppender
appender.rolling.type = RollingFile
appender.rolling.append = false
appender.rolling.fileName = ${sys:log.file}
appender.rolling.filePattern = ${sys:log.file}.%i
appender.rolling.layout.type = PatternLayout
appender.rolling.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
appender.rolling.policies.type = Policies
appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
appender.rolling.policies.size.size=100MB
appender.rolling.strategy.type = DefaultRolloverStrategy
appender.rolling.strategy.max = 10
# Suppress the irrelevant (wrong) warnings from the Netty channel handler
logger.netty.name = org.jboss.netty.channel.DefaultChannelPipeline
logger.netty.level = OFF
1.2.5.2?jobmanager-service.yaml
apiVersion: v1
kind: Service
metadata:
name: flink-jobmanager
spec:
type: ClusterIP
ports:
- name: rpc
port: 6123
- name: blob-server
port: 6124
- name: webui
port: 8081
selector:
app: flink
component: jobmanager
1.2.5.3?jobmanager-rest-service.yaml
将 jobmanager rest端口公开为公共 Kubernetes 节点的端口
apiVersion: v1
kind: Service
metadata:
name: flink-jobmanager-rest
spec:
type: NodePort
ports:
- name: rest
port: 8081
targetPort: 8081
nodePort: 30081
selector:
app: flink
component: jobmanager
1.2.5.4?taskmanager-query-state-service.yaml
公开 TaskManager 端口以访问可查询状态作为公共 Kubernetes 节点的端口
apiVersion: v1
kind: Service
metadata:
name: flink-taskmanager-query-state
spec:
type: NodePort
ports:
- name: query-state
port: 6125
targetPort: 6125
nodePort: 30025
selector:
app: flink
component: taskmanager
1.2.5.5? jobmanager-session-deployment-non-ha.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: flink-jobmanager
spec:
replicas: 1
selector:
matchLabels:
app: flink
component: jobmanager
template:
metadata:
labels:
app: flink
component: jobmanager
spec:
containers:
- name: jobmanager
image: 192.168.20.62:2333/bigdata/flink-centos-admin:1.16.2
args: ["jobmanager"]
ports:
- containerPort: 6123
name: rpc
- containerPort: 6124
name: blob-server
- containerPort: 8081
name: webui
livenessProbe:
tcpSocket:
port: 6123
initialDelaySeconds: 30
periodSeconds: 60
volumeMounts:
- name: flink-config-volume
mountPath: /opt/apache/flink-1.16.2/conf/
securityContext:
runAsUser: 9999 # refers to user _flink_ from official flink image, change if necessary
volumes:
- name: flink-config-volume
configMap:
name: flink-config
items:
- key: flink-conf.yaml
path: flink-conf.yaml
- key: log4j-console.properties
path: log4j-console.properties
1.2.5.6??taskmanager-session-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: flink-taskmanager
spec:
replicas: 2
selector:
matchLabels:
app: flink
component: taskmanager
template:
metadata:
labels:
app: flink
component: taskmanager
spec:
containers:
- name: taskmanager
image: 192.168.20.62:2333/bigdata/flink-centos-admin:1.16.2
args: ["taskmanager"]
ports:
- containerPort: 6122
name: rpc
- containerPort: 6125
name: query-state
livenessProbe:
tcpSocket:
port: 6122
initialDelaySeconds: 30
periodSeconds: 60
volumeMounts:
- name: flink-config-volume
mountPath: /opt/apache/flink-1.16.2/conf/
securityContext:
runAsUser: 9999 # refers to user _flink_ from official flink image, change if necessary
volumes:
- name: flink-config-volume
configMap:
name: flink-config
items:
- key: flink-conf.yaml
path: flink-conf.yaml
- key: log4j-console.properties
path: log4j-console.properties
1.2.6?创建 flink 集群
kubectl create ns flink
# Configuration and service definition
kubectl create -f flink-configuration-configmap.yaml -n flink
# service
kubectl create -f jobmanager-service.yaml -n flink
kubectl create -f jobmanager-rest-service.yaml -n flink
kubectl create -f taskmanager-query-state-service.yaml -n flink
# Create the deployments for the cluster
kubectl create -f jobmanager-session-deployment-non-ha.yaml -n flink
kubectl create -f taskmanager-session-deployment.yaml -n flink
1.2.7?提交任务
./bin/flink run -m 192.168.20.62:30081 ./examples/streaming/TopSpeedWindowing.jar
1.2.8 删除集群
kubectl delete -f jobmanager-service.yaml -n flink
kubectl delete -f flink-configuration-configmap.yaml -n flink
kubectl delete -f taskmanager-session-deployment.yaml -n flink
kubectl delete -f jobmanager-session-deployment.yaml -n flink
kubectl delete ns flink --force
二 、application 模式(推荐)
Kubernetes 中一个基本的 Flink Application 集群部署包含三个组件
-
运行
JobManager
的应用程序 -
TaskManagers
池的部署 -
暴露
JobManager
的 REST 和 UI 端口的服务
2.1 Native Kubernetes 模式(常用)
2.1.1?构建镜像 Dockerfile
FROM flink:1.16.2
RUN rm -f /etc/localtime && ln -sv /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo "Asia/Shanghai" > /etc/timezone
RUN export LANG=zh_CN.UTF-8
RUN mkdir -p $FLINK_HOME/usrlib
COPY ./flink-1.16.2/examples/streaming/TopSpeedWindowing.jar /opt/flink/usrlib/
开始构建镜像
docker build -t 192.168.20.62:2333/bigdata/flink-application:1.16.2 . --no-cache
docker push 192.168.20.62:2333/bigdata/flink-application:1.16.2
2.1.2?创建命名空间和 serviceacount
# 创建namespace
kubectl create ns flink
# 创建serviceaccount
kubectl create serviceaccount flink-service-account -n flink
# 用户授权
kubectl create clusterrolebinding flink-role-binding-flink --clusterrole=edit --serviceaccount=flink:flink-service-account
2.1.3?创建 flink 集群并提交任务
./bin/flink run-application \
--target kubernetes-application \
-Dkubernetes.cluster-id=my-first-application-cluster \
-Dkubernetes.container.image=192.168.20.62:2333/bigdata/flink-application:1.16.2 \
-Dkubernetes.jobmanager.replicas=1 \
-Dkubernetes.namespace=flink \
-Dkubernetes.jobmanager.service-account=flink-service-account \
-Dexternal-resource.limits.kubernetes.cpu=2000m \
-Dexternal-resource.limits.kubernetes.memory=2Gi \
-Dexternal-resource.requests.kubernetes.cpu=1000m \
-Dexternal-resource.requests.kubernetes.memory=1Gi \
-Dkubernetes.rest-service.exposed.type=NodePort \
local:///opt/flink/usrlib/TopSpeedWindowing.jar
local
是application模式中唯一支持的方案。local 代表本地环境,这里即 pod 或者容器环境,并非宿主机。
2.1.4?删除 flink 集群
kubectl delete deployment/my-first-application-cluster -n flink
kubectl delete ns flink --force
2.2?Standalone 模式(待定)
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!