数据结构与算法之美学习笔记:41 | 动态规划理论:一篇文章带你彻底搞懂最优子结构、无后效性和重复子问题

2023-12-28 11:37:04

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述
今天,我主要讲动态规划的一些理论知识。学完这节内容,可以帮你解决这样几个问题:什么样的问题可以用动态规划解决?解决动态规划问题的一般思考过程是什么样的?贪心、分治、回溯、动态规划这四种算法思想又有什么区别和联系?

“一个模型三个特征”理论讲解

什么样的问题适合用动态规划来解决呢?换句话说,动态规划能解决的问题有什么规律可循呢?我把这部分理论总结为“一个模型三个特征”。

首先,我们来看,什么是“一个模型”?它指的是动态规划适合解决的问题的模型。我把这个模型定义为“多阶段决策最优解模型”。

我们一般是用动态规划来解决最优问题。而解决问题的过程,需要经历多个决策阶段。每个决策阶段都对应着一组状态。然后我们寻找一组决策序列,经过这组决策序列,能够产生最终期望求解的最优值。

现在,我们再来看,什么是“三个特征”?它们分别是最优子结构、无后效性和重复子问题。

  1. 最优子结构
    最优子结构指的是,问题的最优解包含子问题的最优解。反过来说就是,我们可以通过子问题的最优解,推导出问题的最优解。如果我们把最优子结构,对应到我们前面定义的动态规划问题模型上,那我们也可以理解为,后面阶段的状态可以通过前面阶段的状态推导出来。
  2. 无后效性
    无后效性有两层含义,第一层含义是,在推导后面阶段的状态的时候,我们只关心前面阶段的状态值,不关心这个状态是怎么一步一步推导出来的。第二层含义是,某阶段状态一旦确定,就不受之后阶段的决策影响。无后效性是一个非常“宽松”的要求。只要满足前面提到的动态规划问题模型,其实基本上都会满足无后效性。
  3. 重复子问题
    如果用一句话概括一下,那就是,不同的决策序列,到达某个相同的阶段时,可能会产生重复的状态。

“一个模型三个特征”实例剖析

假设我们有一个 n 乘以 n 的矩阵 w[n][n]。矩阵存储的都是正整数。棋子起始位置在左上角,终止位置在右下角。我们将棋子从左上角移动到右下角。每次只能向右或者向下移动一位。从左上角到右下角,会有很多不同的路径可以走。我们把每条路径经过的数字加起来看作路径的长度。那从左上角移动到右下角的最短路径长度是多少呢?
在这里插入图片描述
我们先看看,这个问题是否符合“一个模型”?
从 (0, 0) 走到 (n-1, n-1),总共要走 2*(n-1) 步,也就对应着 2*(n-1) 个阶段。每个阶段都有向右走或者向下走两种决策,并且每个阶段都会对应一个状态集合。
我们把状态定义为 min_dist(i, j),其中 i 表示行,j 表示列。min_dist 表达式的值表示从 (0, 0) 到达 (i, j) 的最短路径长度。所以,这个问题是一个多阶段决策最优解问题,符合动态规划的模型。
在这里插入图片描述
我们再来看,这个问题是否符合“三个特征”?
我们可以用回溯算法来解决这个问题。如果你自己写一下代码,画一下递归树,就会发现,递归树中有重复的节点。重复的节点表示,从左上角到节点对应的位置,有多种路线,这也能说明这个问题中存在重复子问题。
在这里插入图片描述
如果我们走到 (i, j) 这个位置,我们只能通过 (i-1, j),(i, j-1) 这两个位置移动过来,也就是说,我们想要计算 (i, j) 位置对应的状态,只需要关心 (i-1, j),(i, j-1) 两个位置对应的状态,并不关心棋子是通过什么样的路线到达这两个位置的。而且,我们仅仅允许往下和往右移动,不允许后退,所以,前面阶段的状态确定之后,不会被后面阶段的决策所改变,所以,这个问题符合“无后效性”这一特征。

刚刚定义状态的时候,我们把从起始位置 (0, 0) 到 (i, j) 的最小路径,记作 min_dist(i, j)。因为我们只能往右或往下移动,所以,我们只有可能从 (i, j-1) 或者 (i-1, j) 两个位置到达 (i, j)。也就是说,到达 (i, j) 的最短路径要么经过 (i, j-1),要么经过 (i-1, j),而且到达 (i, j) 的最短路径肯定包含到达这两个位置的最短路径之一。换句话说就是,min_dist(i, j) 可以通过 min_dist(i, j-1) 和 min_dist(i-1, j) 两个状态推导出来。这就说明,这个问题符合“最优子结构”。

min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))

两种动态规划解题思路总结

我个人觉得,解决动态规划问题,一般有两种思路。我把它们分别叫作,状态转移表法和状态转移方程法。

  1. 状态转移表法
    一般能用动态规划解决的问题,都可以使用回溯算法的暴力搜索解决。所以,当我们拿到问题的时候,我们可以先用简单的回溯算法解决,然后定义状态,每个状态表示一个节点,然后对应画出递归树。从递归树中,我们很容易可以看出来,是否存在重复子问题,以及重复子问题是如何产生的。以此来寻找规律,看是否能用动态规划解决。

找到重复子问题之后,接下来,我们有两种处理思路,第一种是直接用回溯加“备忘录”的方法,来避免重复子问题。从执行效率上来讲,这跟动态规划的解决思路没有差别。第二种是使用动态规划的解决方法,状态转移表法。我们重点来看状态转移表法是如何工作的。

我们先画出一个状态表。状态表一般都是二维的,所以你可以把它想象成二维数组。其中,每个状态包含三个变量,行、列、数组值。我们根据决策的先后过程,从前往后,根据递推关系,分阶段填充状态表中的每个状态。最后,我们将这个递推填表的过程,翻译成代码,就是动态规划代码了。

当状态表是二维的情况下,我们可以使用状态转移表法。但是如果问题的状态比较复杂,需要很多变量来表示,那对应的状态表可能就是高维的,比如三维、四维。那这个时候,我们就不适合用状态转移表法来解决了。

现在,我们来看一下,如何套用这个状态转移表法,来解决之前那个矩阵最短路径的问题?

从起点到终点,我们有很多种不同的走法。我们可以穷举所有走法,然后对比找出一个最短走法。不过如何才能无重复又不遗漏地穷举出所有走法呢?我们可以用回溯算法这个比较有规律的穷举算法。

回溯算法的代码实现如下所示。

private int minDist = Integer.MAX_VALUE; // 全局变量或者成员变量
// 调用方式:minDistBacktracing(0, 0, 0, w, n);
public void minDistBT(int i, int j, int dist, int[][] w, int n) {
  // 到达了n-1, n-1这个位置了,这里看着有点奇怪哈,你自己举个例子看下
  if (i == n && j == n) {
    if (dist < minDist) minDist = dist;
    return;
  }
  if (i < n) { // 往下走,更新i=i+1, j=j
    minDistBT(i + 1, j, dist+w[i][j], w, n);
  }
  if (j < n) { // 往右走,更新i=i, j=j+1
    minDistBT(i, j+1, dist+w[i][j], w, n);
  }
}

有了回溯代码之后,接下来,我们要画出递归树,以此来寻找重复子问题。在递归树中,一个状态(也就是一个节点)包含三个变量 (i, j, dist),其中 i,j 分别表示行和列,dist 表示从起点到达 (i, j) 的路径长度。从图中,我们看出,尽管 (i, j, dist) 不存在重复的,但是 (i, j) 重复的有很多。对于 (i, j) 重复的节点,我们只需要选择 dist 最小的节点,继续递归求解,其他节点就可以舍弃了。
在这里插入图片描述
既然存在重复子问题,我们就可以尝试看下,是否可以用动态规划来解决呢?
我们画出一个二维状态表,表中的行、列表示棋子所在的位置,表中的数值表示从起点到这个位置的最短路径。我们按照决策过程,通过不断状态递推演进,将状态表填好。为了方便代码实现,我们按行来进行依次填充。
在这里插入图片描述
代码实现如下所示:

private int minDist = Integer.MAX_VALUE; // 全局变量或者成员变量
// 调用方式:minDistBacktracing(0, 0, 0, w, n);
public void minDistBT(int i, int j, int dist, int[][] w, int n) {
  // 到达了n-1, n-1这个位置了,这里看着有点奇怪哈,你自己举个例子看下
  if (i == n && j == n) {
    if (dist < minDist) minDist = dist;
    return;
  }
  if (i < n) { // 往下走,更新i=i+1, j=j
    minDistBT(i + 1, j, dist+w[i][j], w, n);
  }
  if (j < n) { // 往右走,更新i=i, j=j+1
    minDistBT(i, j+1, dist+w[i][j], w, n);
  }
}
  1. 状态转移方程法
    状态转移方程法有点类似递归的解题思路。我们需要分析,某个问题如何通过子问题来递归求解,也就是所谓的最优子结构。根据最优子结构,写出递归公式,也就是所谓的状态转移方程。有了状态转移方程,代码实现就非常简单了。一般情况下,我们有两种代码实现方法,一种是递归加“备忘录”,另一种是迭代递推。
min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))

状态转移方程是解决动态规划的关键。如果我们能写出状态转移方程,那动态规划问题基本上就解决一大半了,而翻译成代码非常简单。

下面我用递归加“备忘录”的方式,将状态转移方程翻译成来代码。

private int[][] matrix = 
         {{1359}, {2134}{5267}{6843}};
private int n = 4;
private int[][] mem = new int[4][4];
public int minDist(int i, int j) { // 调用minDist(n-1, n-1);
  if (i == 0 && j == 0) return matrix[0][0];
  if (mem[i][j] > 0) return mem[i][j];
  int minLeft = Integer.MAX_VALUE;
  if (j-1 >= 0) {
    minLeft = minDist(i, j-1);
  }
  int minUp = Integer.MAX_VALUE;
  if (i-1 >= 0) {
    minUp = minDist(i-1, j);
  }
  
  int currMinDist = matrix[i][j] + Math.min(minLeft, minUp);
  mem[i][j] = currMinDist;
  return currMinDist;
}

我要强调一点,不是每个问题都同时适合这两种解题思路。有的问题可能用第一种思路更清晰,而有的问题可能用第二种思路更清晰,所以,你要结合具体的题目来看,到底选择用哪种解题思路。

四种算法思想比较分析

今天的内容主要讲些理论知识,我正好一块儿也分析一下这四种算法,看看它们之间有什么区别和联系。

如果我们将这四种算法思想分一下类,那贪心、回溯、动态规划可以归为一类,而分治单独可以作为一类,因为它跟其他三个都不大一样。为什么这么说呢?前三个算法解决问题的模型,都可以抽象成我们今天讲的那个多阶段决策最优解模型,而分治算法解决的问题尽管大部分也是最优解问题,但是,大部分都不能抽象成多阶段决策模型。

回溯算法是个“万金油”。基本上能用的动态规划、贪心解决的问题,我们都可以用回溯算法解决。回溯算法相当于穷举搜索。穷举所有的情况,然后对比得到最优解。不过,回溯算法的时间复杂度非常高,是指数级别的,只能用来解决小规模数据的问题。对于大规模数据的问题,用回溯算法解决的执行效率就很低了。

尽管动态规划比回溯算法高效,但是,并不是所有问题,都可以用动态规划来解决。能用动态规划解决的问题,需要满足三个特征,最优子结构、无后效性和重复子问题。在重复子问题这一点上,动态规划和分治算法的区分非常明显。分治算法要求分割成的子问题,不能有重复子问题,而动态规划正好相反,动态规划之所以高效,就是因为回溯算法实现中存在大量的重复子问题。

贪心算法实际上是动态规划算法的一种特殊情况。它解决问题起来更加高效,代码实现也更加简洁。不过,它可以解决的问题也更加有限。它能解决的问题需要满足三个条件,最优子结构、无后效性和贪心选择性。“贪心选择性”的意思是,通过局部最优的选择,能产生全局的最优选择。每一个阶段,我们都选择当前看起来最优的决策,所有阶段的决策完成之后,最终由这些局部最优解构成全局最优解。

内容小结

我首先讲了什么样的问题适合用动态规划解决。这些问题可以总结概括为“一个模型三个特征”。其中,“一个模型”指的是,问题可以抽象成分阶段决策最优解模型。“三个特征”指的是最优子结构、无后效性和重复子问题。

然后,我讲了两种动态规划的解题思路。它们分别是状态转移表法和状态转移方程法。其中,状态转移表法解题思路大致可以概括为,回溯算法实现 - 定义状态 - 画递归树 - 找重复子问题 - 画状态转移表 - 根据递推关系填表 - 将填表过程翻译成代码。状态转移方程法的大致思路可以概括为,找最优子结构 - 写状态转移方程 - 将状态转移方程翻译成代码。

最后,我们对比了之前讲过的四种算法思想。贪心、回溯、动态规划可以解决的问题模型类似,都可以抽象成多阶段决策最优解模型。尽管分治算法也能解决最优问题,但是大部分问题的背景都不适合抽象成多阶段决策模型。

文章来源:https://blog.csdn.net/weixin_43597208/article/details/135261211
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。