python统计学-两个总体均值差的区间估计
简介
两个总体均值差的区间估计是指,在给定的置信水平下,估计两个总体均值差的置信区间。两个总体均值差的区间估计的公式为:
X  ̄ 1 ? X  ̄ 2 ± t α / 2 , n 1 + n 2 ? 2 s 1 2 n 1 + s 2 2 n 2 \overline{X}_1 - \overline{X}_2 \pm t_{\alpha/2, n_1 + n_2 - 2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} X1??X2?±tα/2,n1?+n2??2?n1?s12??+n2?s22???
其中, X  ̄ 1 \overline{X}_1 X1?和 X  ̄ 2 \overline{X}_2 X2?分别是两个总体的样本均值, s 1 2 s_1^2 s12?和 s 2 2 s_2^2 s22?分别是两个总体的样本方差, n 1 n_1 n1?和 n 2 n_2 n2?分别是两个总体的样本容量, t α / 2 , n 1 + n 2 ? 2 t_{\alpha/2, n_1 + n_2 - 2} tα/2,n1?+n2??2?是置信水平为 α \alpha α,自由度为 n 1 + n 2 ? 2 n_1 + n_2 - 2 n1?+n2??2的t分布的临界值。
应用
两个总体均值差的区间估计在实际工程中有广泛的应用,例如:
- 产品质量控制:在产品质量控制中,需要对两个不同批次的产品的质量进行比较。两个总体均值差的区间估计可以用来估计两个批次产品质量的差异,并判断两个批次产品是否满足质量要求。
- 医学研究:在医学研究中,需要对两种不同治疗方法的疗效进行比较。两个总体均值差的区间估计可以用来估计两种治疗方法的疗效差异,并判断两种治疗方法是否具有统计学意义。
- 市场调查:在市场调查中,需要对两个不同产品的市场份额进行比较。两个总体均值差的区间估计可以用来估计两个产品的市场份额差异,并判断两个产品的市场份额是否具有统计学意义。
优缺
两个总体均值差的区间估计有以下优点:
- 简单易用,计算方便。
- 适用范围广,可以用于正态分布和非正态分布的数据。
- 可以估计两个总体均值差的置信区间,从而对两个总体均值差做出更准确的判断。
两个总体均值差的区间估计也有以下缺点:
- 需要知道两个总体的样本均值、样本方差和样本容量。
- 当两个总体的样本容量较小时,区间估计的精度较低。
- 当两个总体的方差不相等时,区间估计的精度也较低。
代码
Python代码:
import numpy as np
import scipy.stats as stats
def confidence_interval_two_sample_means(sample1, sample2, confidence_level):
"""Calculates the confidence interval for the difference between two sample means.
Args:
sample1: The first sample.
sample2: The second sample.
confidence_level: The desired confidence level, as a decimal between 0 and 1.
Returns:
A tuple containing the lower and upper bounds of the confidence interval.
"""
# Calculate the sample means and sample variances
mean1 = np.mean(sample1)
mean2 = np.mean(sample2)
var1 = np.var(sample1)
var2 = np.var(sample2)
# Calculate the pooled variance
pooled_var = ((n1 - 1) * var1 + (n2 - 1) * var2) / (n1 + n2 - 2)
# Calculate the t-statistic
t_stat = (mean1 - mean2) / np.sqrt(pooled_var * (1/n1 + 1/n2))
# Calculate the degrees of freedom
df = n1 + n2 - 2
# Calculate the critical value
critical_value = stats.t.ppf(1 - confidence_level / 2, df)
# Calculate the confidence interval
lower_bound = mean1 - mean2 - critical_value * np.sqrt(pooled_var * (1/n1 + 1/n2))
upper_bound = mean1 - mean2 + critical_value * np.sqrt(pooled_var * (1/n1 + 1/n2))
return lower_bound, upper_bound
# Example usage
sample1 = np.random.normal(10, 2, 100)
sample2 = np.random.normal(12, 3, 100)
confidence_level = 0.95
lower_bound, upper_bound = confidence_interval_two_sample_means(sample1, sample2, confidence_level)
print("Confidence interval:", lower_bound, upper_bound)
R代码:
# Function to calculate the confidence interval for the difference between two sample means
conf_interval_two_sample_means <- function(sample1, sample2, confidence_level) {
# Calculate the sample means and sample variances
mean1 <- mean(sample1)
mean2 <- mean(sample2)
var1 <- var(sample1)
var2 <- var(sample2)
# Calculate the pooled variance
pooled_var <- ((length(sample1) - 1) * var1 + (length(sample2) - 1) * var2) / (length(sample1) + length(sample2) - 2)
# Calculate the t-statistic
t_stat <- (mean1 - mean2) / sqrt(pooled_var * (1/length(sample1) + 1/length(sample2)))
# Calculate the degrees of freedom
df <- length(sample1) + length(sample2) - 2
# Calculate the critical value
critical_value <- qt(1 - confidence_level / 2, df)
# Calculate the confidence interval
lower_bound <- mean1 - mean2 - critical_value * sqrt(pooled_var * (1/length(sample1) + 1/length(sample2)))
upper_bound <- mean1 - mean2 + critical_value * sqrt(pooled_var * (1/length(sample1) + 1/length(sample2)))
return(c(lower_bound, upper_bound))
}
# Example usage
sample1 <- rnorm(100, 10, 2)
sample2 <- rnorm(100, 12, 3)
confidence_level <- 0.95
conf_interval <- conf_interval_two_sample_means(sample1, sample2, confidence_level)
print(paste("Confidence interval:", conf_interval[1], conf_interval[2]))
注意
- 在使用两个总体均值差的区间估计时,需要知道两个总体的样本均值、样本方差和样本容量。
- 当两个总体的样本容量较小时,区间估计的精度较低。
- 当两个总体的方差不相等时,区间估计的精度也较低。
- 在使用两个总体均值差的区间估计时,需要选择合适的置信水平。置信水平越高,区间估计的精度越高,但区间估计的宽度也越大。
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!