数据结构与算法—查找算法(线性查找、二分查找、插值查找、斐波那契查找)

2023-12-15 22:41:00

查找算法


在java中,常用的查找有四种:

  1. 顺序(线性)查找
  2. 二分查找/折半查找
  3. 插值查找
  4. 斐波那契查找

1. 线性查找算法

线性查找太简单了,就是一个个遍历,看值对不对的上

韩老师代码如下

package com.atguigu.search;

/**
 * @author 小小低头哥
 * @version 1.0
 * 线性查找
 */
public class SeqSearch {

    public static void main(String[] args) {
        int arr[] = {1, 9, 11, -1, 34, 89}; //没有顺序的数组
        int index = seqSearch(arr, 11);
        if (index == -1) {
            System.out.println("没找到!");
        } else {
            System.out.println("找到了对应的位置index=" + index);
        }
    }

    /**
     * 实现线性查找 找到一个满足条件的值就返回
     * @param arr   数组
     * @param value 要查找的值
     * @return  找到就返回对应的索引值 没找到就返回-1
     */
    public static int seqSearch(int[] arr, int value) {
        //线性查找是逐一对比 发现有相同值 就返回下标
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] == value) {
                return i;
            }
        }
        return -1;  //没找到就返回-1
    }

}

2. 二分查找算法

2.1 二分查找思路分析

在这里插入图片描述

图2 思路图

2.2 应用实例

受归并排序中递归的启发,觉得也可以用来查找。于是乎我自己用归并中递归写了一份查找代码

我写的这份代码中,包含单个查找、用于有序数组且返回所有相同值的索引、用于无序数组且返回所有相同值的索引

private static int count = 0;  //用来保存多次查找到数据位置的索引

public static void main(String[] args) {
    int[] arr = {1, 8, 10, 10,10,10,10,10,11,89, 1000, 1234};

    int index;
    System.out.println("单个查找");
    index = divSearch(arr, 0, arr.length - 1, 10);
    if (index == -1) {
        System.out.println("没找到!");
    } else {
        System.out.println("找到了对应的位置index=" + index);
    }

    System.out.println("用于无序且返回所有相同值的索引");
    int[] arr2 = new int[arr.length];   //存放多个数值
    divSearch(arr, 0, arr.length - 1, 10, arr2);
    for (int i = 0; i < count; i++) {
        System.out.println("找到了对应的位置index=" + arr2[i]);
    }
    //重新置零
    count = 0;

    System.out.println("用于有序且返回所有相同值的索引");
    arr2 = new int[arr.length];   //存放多个数值
    divSearch2(arr, 0, arr.length - 1, 10, arr2);
    for (int i = 0; i < count; i++) {
        System.out.println("找到了对应的位置index=" + arr2[i]);
    }
}

//用于有序且返回所有相同值的索引
public static int divSearch2(int[] arr, int left, int right, int value, int[] arr2) {
    if (left == right) {    //只剩下一个元素则退出
        if (arr[left] == value) {   //如果此元素为要查找的元素
            arr2[count++] = left;   //存起来
        }else if (count != 0) {   //说明上一个已经找到了 由于数组是有序的 那么这么如果不是相同的值的话
            //以后都不可能是了 直接退出了
            return 0;
        }
        return -1;  //返回-1表示没找到
    }

    int mid = (left + right) / 2;
    //左递归
    if (divSearch2(arr, left, mid, value, arr2) == 0) { //说明
        return 0;   //退出循环
    }
    //右递归
    if (divSearch2(arr, mid + 1, right, value, arr2) == 0) { //说明
        return 0;   //退出循环
    }
    return -1;  //否则继续循环
}

//用于无序且返回所有相同值的索引
public static void divSearch(int[] arr, int left, int right, int value, int[] arr2) {
    if (left == right) {    //只剩下一个元素则退出
        if (arr[left] == value) {   //如果此元素为要查找的元素
            arr2[count++] = left;   //存起来
        }
        return;  //返回
    }

    int mid = (left + right) / 2;
    //左递归
    divSearch(arr, left, mid, value, arr2);
    //右递归
    divSearch(arr, mid + 1, right, value, arr2);
}

public static int divSearch(int[] arr, int left, int right, int value) {

    if (left == right) {    //只剩下一个元素则退出
        if (arr[left] == value) {   //如果此元素为要查找的元素
            return left;
        }
        return -1;  //否则返回-1
    }

    int mid = (left + right) / 2;
    int index;
    index = divSearch(arr, left, mid, value);
    //左递归
    if (index != -1) {   //说明找到了对应的数
        return index;
    }
    //右递归
    index = divSearch(arr, mid + 1, right, value);
    if (index != -1) {   //说明找到了对应的数
        return index;
    }
    return -1;  //其他情况(不是只有一种元素的情况)均返回-1
}

/**
 * @param arr     数组
 * @param left    左边的索引
 * @param right   右边的索引
 * @param findVal 要查找的值
 * @return 如果找到就返回下标 如果没有找到 就返回-1
 */
public static int binarySearch(int[] arr, int left, int right, int findVal) {

    int mid = (left + right) / 2;
    int midVal = arr[mid];

    if ( left > right) {   //说明递归完了也没有找到对应的值 结束查找饿了
        return -1;
    }
    if (findVal > midVal) {
        return binarySearch(arr, mid + 1, right, findVal);  //右递归
    } else if (findVal < midVal) {
        return binarySearch(arr, left, mid - 1, findVal); //左递归
    } else {
        return mid;
    }

}

韩老师代码如下,包含一个

/**
 * @param arr     数组
 * @param left    左边的索引
 * @param right   右边的索引
 * @param findVal 要查找的值
 * @return 如果找到就返回下标 如果没有找到 就返回-1
 */
public static int binarySearch(int[] arr, int left, int right, int findVal) {

    int mid = (left + right) / 2;
    int midVal = arr[mid];

    if ( left > right) {   //说明递归完了也没有找到对应的值 结束查找饿了
        return -1;
    }
    if (findVal > midVal) {
        return binarySearch(arr, mid + 1, right, findVal);  //右递归
    } else if (findVal < midVal) {
        return binarySearch(arr, left, mid - 1, findVal); //左递归
    } else {
        return mid;
    }

}

/**
 * 1. 再找到mid索引值,不需马上返回
 * 2. 向mid索引值的左边扫描 将所有满足findVal的元素的下标 加入到集合ArrayList
 * 3. 向mid索引值的右边扫描 将所有满足findVal的元素的下标 加入到集合ArrayList
 * 4. 将ArrayList返回
 */
public static ArrayList<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {

    int mid = (left + right) / 2;
    int midVal = arr[mid];

    if ( left > right) {   //说明递归完了也没有找到对应的值 返回null
        return null;
    }
    if (findVal > midVal) {
        return binarySearch2(arr, mid + 1, right, findVal);  //右递归
    } else if (findVal < midVal) {
        return binarySearch2(arr, left, mid - 1, findVal); //左递归
    } else {
        ArrayList<Integer> resIndexList = new ArrayList<>();
        //左扫描
        int temp = mid - 1;
        while (true){
            if(temp < 0 || arr[temp] != findVal){
                break;
            }
            //否则就放入到集合中
            resIndexList.add(temp--);
        }
        resIndexList.add(mid);
        //右扫描
        temp = mid + 1;
        while (true){
            if(temp > arr.length-1 || arr[temp] != findVal){
                break;
            }
            //否则就放入到集合中
            resIndexList.add(temp++);
        }
        return resIndexList;
    }
}

3. 插值查找

3.1 基本原理

  1. 查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找
  2. 将折半查找中的求mid索引的公式,low表示左边索引,high表示右边索引

m i d = l o w + k e y ? a [ l o w ] a [ h i g h ] ? a [ l o w ] ( h i g h ? l o w ) (1) mid = low+\frac{key-a[low]}{a[high]-a[low]}(high-low)\tag{1} mid=low+a[high]?a[low]key?a[low]?(high?low)(1)

式中,key就是findVal(要查找的值),low就是arr[left] (左界限),high就是arr[right](右界限)

注意事项

  1. 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找,速度较快
  2. 关键字分布不均匀的情况下,该方法不一定比折半查找要好。

3.2 应用实例

韩老师代码

public static int insertValueSearch(int[] arr, int left, int right, int findVal) {

    if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {  //
        return -1;
    }

    //求出mid
    int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
    int midVal = arr[mid];
    if (findVal > midVal) {
        return insertValueSearch(arr, mid + 1, right, findVal);  //右递归
    } else if (findVal < midVal) { 
        return insertValueSearch(arr, left, mid - 1, findVal); //左递归
    } else {
        return mid;
    }
}

其实不难发现,和二分查找的区别就是mid的赋值方式变了。

4. 斐波那契

斐波那契数列 {1,1,2,3,5,8,13,21,34,55}中前后两相邻数的比例,无限接近黄金分割值0.618。

4.1 基本原理

??斐波那契查找原理于前两种相似,仅仅改变了中间节点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列),如图所示。

在这里插入图片描述

图3 F(k)

对F(k-1)-1的理解:

  1. 由斐波那契数列F[K]=F[K-1]+F[K-2]的性质,可以得到(F[I]-1)=(F[k-1]-1)+(F[k-2]-1)+1。
  2. 类似的,每一子段也可以用相同的方式分割
  3. 但顺序表长度n不一定刚好等于F[K]-1,所以需要将原来的顺序表长度n增加至F[K]-1。这里的k值只要能使得F[K]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[K]-1位置),都赋为n位置的值即可。

看原理有点难理解,直接看4.2代码更有感觉

while(n > fib(k)-1){
	k++;
}

4.2 应用实例

韩老师代码如下:并加入俺的注释!!!)

package com.atguigu.search;

import java.util.Arrays;

/**
 * @author 小小低头哥
 * @version 1.0
 * 斐波那契算法
 */
public class FiBoNaQiSearch {

    private static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = {1, 2, 3, 4, 6, 7, 8, 9, 10};
        int i = fibSearch(arr, 10);
        System.out.println(i);
    }

    //因为后面mid=low+F(k-1)-1 需要使用到斐波那契数列 因此需要先获取到一个斐波那契数列
    //非递归方法得到一个斐波那契数列
    public static int[] fib() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    /**
     * 编写斐波那契查找算法
     *
     * @param arr 数组
     * @param key 需要查找的关键值
     * @return 返回对应的下标 如果没有-1
     */
    public static int fibSearch(int[] arr, int key) {
        int low = 0;//左索引起点
        int high = arr.length - 1;  //右索引终点
        //此处mid赋的值没意义 只是为了突出mid的意义 黄金分割点
        //从arr[low]到arr[mid]位置的长度设为m
        //从arr[mid]到arr[high]的长度假设为n
        //那么n/m的值应该逼近0.618
        //所以整个数组的长度应该是n+m-1(除去一个多算的arr[mid])
        //由于斐波那契数列f[]是一个前后相邻数相除逼近0.618的数组
        //所以可令n=f[k-2] m=f[k-1] 则n/m就逼近0.618  这就是为什么用到斐波那契数组的原因!!!
        //所以mid = low + m - 1 = low + f[k-1] - 1;
        //所以arr数组的长度应该为f[k-2]+f[k-1]-1=f[k]-1 !!!!
        //high - low + 1 整个数组的长度
        //0.618 * (high - low + 1) 黄金分割数组值
        //则从low开始的黄金分割长度为位置为 mid = low + 0.618 * (high - low + 1) - 1;
        int mid = (int) (low + 0.618 * (high - low + 1) - 1);    //黄金分割点
        int[] f = fib();    //得到斐波那契数组
        int k = 0;

        //所以由以上分析
        // arr的长度应该符合f[k]-1时
        //先把arr的长度扩容到对应的f[k]-1
        while (arr.length > f[k] - 1) {
            //说明arr的长度大于k位置的斐波那契数 则f[k] 不是所求的值
            k++;
        }
        //退出循环后 则说明找到了
        //开始扩容
        int[] temp = new int[f[k] - 1];
        for (int i = 0; i < temp.length; i++) {
            if (i < arr.length) {
                temp[i] = arr[i];
            } else {
                temp[i] = arr[high];    //扩容位置的数据都用arr最后一个位置的数据填充
            }
        }

        //接下来就是开始查找了
        while (low <= high) {    //当左索引大于右索引结束循环
            //由前面可知 从arr[low]到arr[mid]位置的长度为m
            //mid = low + m - 1 = low + f[k-1] - 1;
            mid = low + f[k - 1] - 1;
            //此后左边长度为f[k-1] 右边长度为f[k-2]
            if (key < temp[mid]) {  //说明需要向左继续判断
                //则下一个循环 整个数组查找范围应该为左边的low - mid-1
                //对应的长度为f[k-1] - 1
                high = mid - 1;
                //则由上面分析 下个循环中左边应该为f[k-1 - 1]
                k--;
            } else if (key > temp[mid]) {    //说明需要向右继续判断
                //则下一个循环 整个数组查找范围应该为右边的mid+1 - high
                //对应长度为f[k-2] - 1
                low = mid + 1;
                //则由上面分析 下个循环中左边应该为f[k-2 - 1]
                k -= 2;
            } else { //说明找到了
                if (mid >= arr.length - 1) {    //说明此时查找的数查到了扩容地方
                    //那么实际应该是arr数组的最后一个元素的地方
                    return arr.length - 1;
                } else {
                    return mid;
                }
            }
        }
        return -1;  //没找到则返回-1
    }
}

5. 查找总结

??学完这几个查找算法后,其实感觉插值和斐波那契本质和二分查找算法思想上没啥差别,就是中点的选取有出入,二分查找规规矩矩为一半。值得注意的是,这几个查找法几乎都是针对有序数组。

文章来源:https://blog.csdn.net/weixin_49429082/article/details/135025600
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。