Transformer-MM-Explainability

 
 two modalities are separated by the [SEP] token,the numbers in each attention module represent the Eq. number.
 
 E 
     
      
       
        
         
        
          h 
         
        
       
      
        _h 
       
      
    h? is the mean, 
     
      
       
       
         ? 
        
       
      
        \nabla 
       
      
    ?A := 
     
      
       
        
         
         
           ? 
          
          
          
            y 
           
          
            t 
           
          
         
         
         
           ? 
          
         
           A 
          
         
        
       
      
        {?y_t}\over?A 
       
      
    ?A?yt??for  
     
      
       
        
        
          y 
         
        
          t 
         
        
       
      
        y_t 
       
      
    yt? which is the model’s output. 
     
      
       
       
         ⊙ 
        
       
      
        \odot 
       
      
    ⊙ is the Hadamard product,remove the negative contributions before averaging.
 
 aggregated self-attention matrix R 
     
      
       
        
         
         
         
           q 
          
         
           q 
          
         
        
       
      
        ^{qq} 
       
      
    qq,previous layers’ mixture of context is embodied by R 
     
      
       
        
         
         
         
           q 
          
         
           k 
          
         
        
       
      
        ^{qk} 
       
      
    qk.
感想
作者的实验在coco和ImageNet验证集上做的,不好follow
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!