模拟退火算法
2024-01-08 14:36:43
模拟退火是物理上退火的方法,通过N次迭代,逼近函数上的一个值
大方向:循环算法
模拟退火算法(Simulated Annealing,简称SA)的思想最早是由Metropolis等提出的。其出发点是基于物理中固体物质的退火过程与一般的组合优化问题之间的相似性。模拟退火法是一种通用的优化算法,其物理退火过程由以下三部分组成:
(1) 加温过程。其目的是增强粒子的热运动,使其偏离平衡位置。当温度足够高时,固体将熔为液体,从而消除系统原先存在的非均匀状态。
(2) 等温过程。对于与周围环境交换热量而温度不变的封闭系统,系统状态的自发变化总是朝自由能减少的方向进行的,当自由能达到最小时,系统达到平衡状态。
(3) 冷却过程。使粒子热运动减弱,系统能量下降,得到晶体结构。
加温过程相当于对算法设定初值,等温过程对应算法的Metropolis抽样过程,冷却过程对应控制参数的下降。这里能量的变化就是目标函数,我们要得到的最优解就是能量最低态。其中Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis准则以一定的概率接受恶化解,这样就使算法跳离局部最优的陷阱。
SA算法的Metropolis准则允许接受一定的恶化解,具体来讲,是以一定概率来接受非最优解。举个例子,相当于保留一些“潜力股”,使解空间里有更多的可能性。对比轮盘赌法,从概率论来讲,它是对非最优解给予概率0,即全部抛弃。
模拟退火本身是求一个最小值问题,但可以转化为求最大值问题,只需要对目标函数加个负号或者取倒数。
?
不断滚动,概率变动
文章来源:https://blog.csdn.net/2302_79394843/article/details/135455516
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!