pytorch学习入门之 Variable(变量)
2023-12-14 20:33:54
Variable(变量)
autograd.Variable
是包的核心类. 它包装了张量, 并且支持几乎所有的操作. 一旦你完成了你的计算, 你就可以调用 .backward()
方法, 然后所有的梯度计算会自动进行.
你还可以通过 .data
属性来访问原始的张量, 而关于该 variable(变量)的梯度会被累计到 .grad
上去.
还有一个针对自动求导实现来说非常重要的类 - Function
.
Variable
和 Function
是相互联系的, 并且它们构建了一个非循环的图, 编码了一个完整的计算历史信息. 每一个 variable(变量)都有一个 .grad_fn
属性, 它引用了一个已经创建了 Variable
的 Function
(除了用户创建的 Variable `` 之外 - 它们的 ``grad_fn is None
).
如果你想计算导数, 你可以在 Variable
上调用 .backward()
方法. 如果 Variable
是标量的形式(例如, 它包含一个元素数据), 你不必指定任何参数给 backward()
, 但是, 如果它有更多的元素. 你需要去指定一个 grad_output
参数, 该参数是一个匹配 shape(形状)的张量.
import torch
from torch.autograd i
文章来源:https://blog.csdn.net/pbymw8iwm/article/details/82894629
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!