[Ray Tracing: The Next Week] 笔记
前言
本篇博客参照自《Ray Tracing: The Next Week》教程,地址为:https://raytracing.github.io/books/RayTracingTheNextWeek.html
该教程在ray tracing in one weekend的基础上,增加了运动模糊、BVH树、Texture映射、柏林噪声、光照、体积渲染等内容。
渲染器的构建过程
与我的上一篇系列笔记类似,我会顺序罗列我认为重要的部分。
运动模糊
这一点和散焦模糊有些类似,也是模仿真实相机拍摄到的现象,即,当相机的快门按下时,运动的物体会发生模糊。
要实现这一点,方法是,在发射采样光线时,令光线在快门的这一段时间内随机发射,再混合采样结果。为光线增加了一个时间t属性。
于此同时,为场景种添加相应的运动物体,比如运动的球体,在1秒的时间内,球体会在某一个方向上移动。这时,因为光线包含时间属性,t时刻的光线r会打到在该时刻对应位置的物体表面上。
最后渲染时,则是将在快门这一时间段内所有的光线追踪结果混合。
以下是运动模糊的渲染结果:
BVH树
BVH树是一种空间划分的数据结构,可以有效提高光线与物体求交的效率。
在该教程中,BVH树的建立分为以下几步:
-
将所有图元包裹在一个大的包围盒中。
-
进行BVH树的划分。
-
一直分到BVH树的叶子节点只有一个图元为止。
作者在划分BVH树时,不希望留下空子树的问题,因此,在划分子树时,若当前只剩下一个图元,文中会令这个图元既属于左子树又属于右子树。另外,在划分过程中,对于[begin, end]范围内的图元,中点为mid,文中会将[begin, mid]划归左子树,[mid, end]划归右子树,相当于mid这个位置的图元既属于左子树又属于右子树。这种划分方式属于作者的喜好,有它的优势。
一个BVH树的例子如下:
包围盒
BVH树采用的包围盒应当便于计算相交,且紧密,AABB包围盒符合这个条件。
三维场景内的AABB包围盒为包含目标图元,且边平行于坐标轴的最小六面体。
如何计算射线与AABB包围盒的相交?拿二维场景举例,如下图所示,射线在与x的两个边界相交时,对应的相交位置为t1、t2,射线在与y的两个边界相交时,对应的相交位置为t3、t4,如果射线与这个2D AABB包围盒相交,则t1、t2与t3、t4 的范围重叠。
三维空间中与上述类似,当射线与x、y、z方向的对应平面相交时,如果范围有重合,则说明射线与包围盒相交。
如何求解射线与对应平面的交点?因为边界都是轴对齐的,将射线的方程带入对应边界的x、y或z值即可。
BVH树的划分
BVH树的划分主要分为三个步骤:
- 随机选择一个轴
- 对BVH树种的图元进行排序
- 对这些图元进行二分,构建子BVH树
文中给出的方法是每次随机选出一个轴,当然也可以轮流选择x、y、z轴。在排序时,依据的排序规则是每个图元对应轴的最小值。在C++中,可以构建box_x_compare、box_y_compare、box_z_compare,然后调用sort方法对数组进行排序。
最终,按照文中给出的BVH树构建方法,光线追踪的渲染过程有所加速。
纹理映射
在光线追踪中,纹理映射是一个反向寻找的过程,即通过射线与物体的交点,反向推算出交点在纹理中的颜色、凹凸等其他属性。这和光栅化不同,光栅化是通过纹理获得物体所有表面的颜色等属性,然后通过光栅化的过程投射给图像。
文中介绍了几种纹理,分别是纯色纹理、空间纹理、以及利用uv坐标的纹理。
纯色纹理。与uv坐标和空间坐标都无关,利用纯色纹理的材质,物体表面的所有颜色都一样。
空间纹理。采样和物体表面的空间坐标有关,和uv坐标无关,即物体表面某一点的颜色由该点的世界坐标(x, y, z)计算得出。
方格纹理就是一种空间纹理,对于任意一点,其颜色的计算是这样的:对于坐标(x, y, z),首先向下取整,得到三个整数结果(?x?,?y?,?z?),将这三个结果相加并进行模2运算,得到0或1。如果结果为0将映射到偶数颜色,如果结果为1将映射到奇数颜色。
方格纹理的一个例子如下:
利用uv坐标的纹理。需要知道如何根据物体表面的三维坐标,计算uv纹理坐标,再利用纹理坐标做颜色运算。因为场景中目前提供的模型都是球体,且目前也不涉及旋转,因此这里的uv坐标直接沿着球面计算。
球面的uv坐标用经纬度表示,其中u = Φ / 2π,v = θ / π,Φ为对应点在单位球中的经度,θ为对应点在单位球中的纬度。球面上点的三维关系与经纬度的关系如下:
y
=
?
c
o
s
(
θ
)
x
=
?
c
o
s
(
?
)
s
i
n
(
θ
)
z
=
s
i
n
(
?
)
s
i
n
(
θ
)
y = -cos(\theta)\\ x = -cos(\phi)sin(\theta)\\ z = sin(\phi)sin(\theta)
y=?cos(θ)x=?cos(?)sin(θ)z=sin(?)sin(θ)
从而可得
?
=
a
t
a
n
2
(
?
z
,
x
)
+
π
θ
=
a
r
c
c
o
s
(
?
y
)
\phi = atan2(-z, x) + \pi\\ \theta = arccos(-y)
?=atan2(?z,x)+πθ=arccos(?y)
注意,这里因为atan2的数值范围为-π到π,但是为了让u映射到[0, 1]范围,需要加上一个π。
利用uv坐标的纹理效果如下:
柏林噪声
柏林噪声是一种自然噪声生成算法。文中主要利用柏林噪声生成空间纹理。
教程中一步步地给出3D柏林噪声的迭代改进过程。
第零次迭代,按照上述方格纹理的思路,首先生成一个大小为256的double数组ranfloat,其中的每个值为从0到1的随机。对于物体表面的每一个点,根据其三维坐标(x, y, z),得出一个指向ranfloat的下标,并根据这个下标,计算出方格的灰阶。其计算代码如下:
int i = static_cast<int>(4 * x) % 256;
int j = static_cast<int>(4 * y) % 256;
int k = static_cast<int>(4 * z) % 256;
int index = i ^ j ^ k;
double grayscale = ranfloat[index];
这一步可以得出一种类似瓦片的效果,这种纹理是重复的。
第一次迭代,在上述瓦片贴图的基础上,加一些随机,具体到计算,主要是对上述代码中的i,j,k进行随机。这一部分的计算代码如下:
static int* perlin_generate_perm(){
int p = new int[256];
for(int i = 0;i<256;i++) p[i] = i;
for(int i = 255;i>0;i--){
int target = random_int(0, i); // 返回一个[0, i]范围的整数
swap(p[i], p[target]);
}
return p;
}
// noise函数内部
{
...
int* perm_x = perlin_generate_perm();
int* perm_y = perlin_generate_perm();
int* perm_z = perlin_generate_perm();
i = perm_x[i];
j = perm_y[j];
k = perm_z[k];
...
}
这一步的纹理效果:
第二次迭代,在生成噪声时,进行线性插值。这一步是将一个点周围8个位置的值做平均加权运算,得出当前位置的灰阶。其核心计算代码如下:
static double trilinear_interp(double c[2][2][2], double u, double v, double w){
double accum = 0.0;
for (int i=0; i < 2; i++)
for (int j=0; j < 2; j++)
for (int k=0; k < 2; k++)
accum += (i*u + (1-i)*(1-u))*
(j*v + (1-j)*(1-v))*
(k*w + (1-k)*(1-w))*c[i][j][k];
return accum;
}
// noise函数内部
{
...
int u = x - floor(x); // floor为向下取整运算
int v = y - floor(y);
int w = z - floor(z);
int i = static_cast<int>(floor(x));
int j = static_cast<int>(floor(y));
int k = static_cast<int>(floor(z));
double c[2][2][2];
for(int di=0;di < 2;di++){
for(int dj=0;dj<2;dj++){
for(int dk=0;dk<2;dk++){
c[di][dj][dk] = ranfloat[
perm_x[(i+di) % 256] ^
perm_y[(j+dj) % 256] ^
perm_z[(k+dk) % 256]
];
}
}
}
double grayscale = trilinear_interp(c, u, v, w);
...
}
此时得出的结果:
第三次迭代,采用Hermitian插值,而不是线性插值来得到uvw的值,让结果更平滑,消除上述明显的网格特征。添加代码:
u = u*u*(3-2*u);
v = v*v*(3-2*v);
w = w*w*(3-2*w);
这一步得出的结果:
第四次迭代,调整噪声贴图的频率,方法就是将一个比例系数scale乘以(x, y, z)坐标值,scale越大,频率就越大。我的理解是,这种噪声的生成有一个模式,每经过一定的间隔就会得出相似的噪声结果。把坐标值增大,再来采样,等效于将模式的间隔缩小,这样导致的结果便是噪声图看起来频率更高。
这一步得出的效果如下:
第五次迭代,上面的结果看起来仍然有些块状,或许是因为这种模式的最小值和最大值总是恰好落在(x, y, z)都为整数的坐标上。因为当(x, y, z)为整数时,u, v, w的值均为0,此时trilinear_interp的结果为c[0][0][0],等于这个点没有和周围做平均运算。
可以用随机vec3数组ranvec代替之前的随机double数组ranfloat进行采样。在加权平均时,用权重向量和周围点的随机向量做点积,累加获得当前点的采样值。这样可以避免最小和最大值总是恰好落在整数坐标上。由于乘出来的值有可能小于零,需要做0.5 * (grayscale + 1.0)的归一化操作。
这一步的核心代码如下:
static double perlin_interp(vec3 c[2][2][2], double u, double v, double w) {
double uu = u*u*(3-2*u);
double vv = v*v*(3-2*v);
double ww = w*w*(3-2*w);
double accum = 0.0;
for (int i=0; i < 2; i++)
for (int j=0; j < 2; j++)
for (int k=0; k < 2; k++) {
vec3 weight_v(u-i, v-j, w-k);
accum += (i*uu + (1-i)*(1-uu))
* (j*vv + (1-j)*(1-vv))
* (k*ww + (1-k)*(1-ww))
* dot(c[i][j][k], weight_v);
}
return accum;
}
// noise函数内部
{
...
double u = x - floor(x);
double v = y - floor(y);
double w = z - floor(z);
int i = static_cast<int>(floor(x));
int j = static_cast<int>(floor(y));
int k = static_cast<int>(floor(z));
vec3 c[2][2][2];
for (int di=0; di < 2; di++)
for (int dj=0; dj < 2; dj++)
for (int dk=0; dk < 2; dk++)
c[di][dj][dk] = ranvec[
perm_x[(i+di) % 256] ^
perm_y[(j+dj) % 256] ^
perm_z[(k+dk) % 256]
];
double grayscale = perlin_interp(c, u, v, w);
...
}
这一步的结果如下图:
第六次迭代,制造湍流效果。将多个不同频率的噪声以不同的权重相加,这就是湍流。湍流部分的计算代码如下:
double turb(const point3& p, int depth=7) const {
double accum = 0.0;
double temp_p = p;
double weight = 1.0;
for (int i = 0; i < depth; i++) {
accum += weight*noise(temp_p);
weight *= 0.5;
temp_p *= 2;
}
return fabs(accum);
}
这一步得出的效果如下:
注:这里的噪声图颜色很深,是因为这里的效果没有做归一化操作,而是直接把小于零的结果直接取绝对值了。
第七次,最后一次迭代,调整相位。将得出的灰度值送入正弦函数做计算,可以得到起伏的结果。利用相位迭代,可以实现类似大理石表面的纹理效果。这一步的核心代码如下:
double s = scale * p;
color = color(1,1,1) * 0.5 * (1 + sin(s.z() + 10*noise.turb(s)));
效果图如下:
平行四边形
除了球体之外,教程中终于添加了另外一种图元:平行四边形。
平行四边形用一个基点和两个向量表示:基点Q、两个边向量u和v。
如何实现射线与平行四边形的求交?主要分三步。
-
找到包含这个平行四边形的平面。
-
判断射线与这个平面的相交情况。
-
判断交点是否在这个平行四边形内。
找到四边形的平面
可以用u和v的叉乘得出平面法线,再将基点Q带入,便可得出这个平面方程。
判断射线与这个平面的相交
射线由一个基点和一个方向向量表示,判断射线与这个平面的相交,可以将射线的方程带入平面的方程。如果射线与平面平行或共面,则认为不相交,如果不平面,则求出这个交点,判断是否在射线的有效范围内。我们可以得到以下的式子。
平面方程:
A
x
+
B
y
+
C
z
=
D
?射线方程:
R
(
t
)
=
P
+
t
d
代入可得:
n
?
(
P
+
t
d
)
=
D
解方程:
n
?
P
+
n
?
t
d
=
D
n
?
P
+
t
(
n
?
d
)
=
D
t
=
D
?
n
?
P
n
?
d
平面方程:Ax + By + Cz = D \ 射线方程:R(t) = \mathbf P + t\mathbf d\\ 代入可得:\mathbf n * (\mathbf P + t\mathbf d) = D \\ 解方程:\mathbf n *\mathbf P +\mathbf n * t\mathbf d = D\\ \mathbf n *\mathbf P + t(\mathbf n *\mathbf d) = D\\ t = \frac{D - \mathbf n * \mathbf P}{\mathbf n * \mathbf d}
平面方程:Ax+By+Cz=D?射线方程:R(t)=P+td代入可得:n?(P+td)=D解方程:n?P+n?td=Dn?P+t(n?d)=Dt=n?dD?n?P?
如果t属于射线范围[t_min, t_max]之内,则认为射线与这个平面相交。
判断交点是否在这个平行四边形内
将平面的点转换成以u、v为基底的二维坐标系中,对于任意一个点P,可以表示为P = Q + αu + βv。做以下运算:
令
p
=
P
?
Q
=
α
u
+
β
v
,
p
是从
Q
到
P
的向量
将
u
、
v
向量分别与
p
叉乘:
v
×
p
=
α
(
v
×
u
)
+
β
(
v
×
v
)
=
α
(
v
×
u
)
u
×
p
=
α
(
u
×
u
)
+
β
(
u
×
v
)
=
β
(
u
×
v
)
向量的除法不能直接进行,两边点乘
n
n
?
(
v
×
p
)
=
n
?
α
(
v
×
u
)
n
?
(
u
×
p
)
=
n
?
β
(
u
×
v
)
则
α
=
n
?
(
v
×
p
)
n
?
(
v
×
u
)
β
=
n
?
(
u
×
p
)
n
?
(
u
×
v
)
令
w
=
n
n
?
(
u
×
v
)
=
n
n
?
n
α
=
w
?
(
p
×
v
)
β
=
w
?
(
u
×
p
)
令 p =\mathbf P -\mathbf Q = \alpha \mathbf u + \beta \mathbf v ,p是从Q到P的向量 \\ \\将u、v向量分别与p叉乘:\\ \mathbf v \times \mathbf p = \alpha (\mathbf v \times \mathbf u) + \beta (\mathbf v \times \mathbf v) = \alpha (\mathbf v \times \mathbf u)\\ \mathbf u \times \mathbf p = \alpha (\mathbf u \times \mathbf u) + \beta (\mathbf u \times \mathbf v) = \beta (\mathbf u \times \mathbf v)\\ \\ 向量的除法不能直接进行,两边点乘n\\ \mathbf n * (\mathbf v \times \mathbf p) = \mathbf n * \alpha (\mathbf v \times \mathbf u)\\ \mathbf n * (\mathbf u \times \mathbf p) = \mathbf n * \beta (\mathbf u \times \mathbf v)\\则 \\ \alpha = \frac{\mathbf n * (\mathbf v \times \mathbf p)}{\mathbf n * (\mathbf v \times \mathbf u)}\\ \beta = \frac{\mathbf n * (\mathbf u \times \mathbf p)}{\mathbf n * (\mathbf u \times \mathbf v)}\\ \\ 令 w = \frac{\mathbf n}{\mathbf n * (\mathbf u \times \mathbf v)} = \frac{\mathbf n}{\mathbf n * \mathbf n} \\ \alpha = \mathbf w * (\mathbf p \times \mathbf v)\\ \beta = \mathbf w * (\mathbf u \times \mathbf p)
令p=P?Q=αu+βv,p是从Q到P的向量将u、v向量分别与p叉乘:v×p=α(v×u)+β(v×v)=α(v×u)u×p=α(u×u)+β(u×v)=β(u×v)向量的除法不能直接进行,两边点乘nn?(v×p)=n?α(v×u)n?(u×p)=n?β(u×v)则α=n?(v×u)n?(v×p)?β=n?(u×v)n?(u×p)?令w=n?(u×v)n?=n?nn?α=w?(p×v)β=w?(u×p)
要判断点是否在平行四边形中,判断α和β在[0, 1]范围内即可。
平行四边形的绘制结果:
灯光
文中将能发光的特性作为一个灯光材质。
灯光材质会有一个主动发光的函数,这样在光线打到灯光材质表面时,会增加一项主动发光所产生的颜色。对于不发光的材质而言,主动发光产生的颜色为零。
同时设置背景颜色,当射线最终没有打到物体时,赋予默认背景颜色,而不是根据画布位置得出的渐变色。
得到的灯光效果如下:
实例化
这一部分主要引入了模型的移动和旋转。
所谓实例是已放置到场景中的几何图元的副本,它完全独立于图元的其他副本,并且可以移动或旋转。
模型移动
在这个过程的实现中,文中没有直接移动模型的坐标,而是反向变换光线的原点位置,然后与模型做求交运算。具体而言,主要分为以下三步:
-
将射线的原点反向移动偏移量
-
判断添加偏移后的射线是否与物体存在交点(如果存在,判断在何处)
-
给交点的位置增加偏移量
这一过程也可以从坐标变化的角度来思考:
- 将射线从世界坐标系转换到物体局部坐标系
- 判断射线在物体坐标系内是否与物体存在交点(如果存在,判断在何处)
- 将交点从物体局部坐标系转换到世界坐标系
文中将移动封装成了一个可击中对象,相当于构建了一个实例,这部分的代码如下:
class translate : public hittable {
public:
bool hit(const ray& r, interval ray_t, hit_record& rec) const override {
// 将射线的原点反向移动偏移量
ray offset_r(r.origin() - offset, r.direction(), r.time());
// 判断添加偏移后的射线是否与物体存在交点(如果存在,判断在何处)
if (!object->hit(offset_r, ray_t, rec))
return false;
// 给交点的位置增加偏移量
rec.p += offset;
return true;
}
private:
shared_ptr<hittable> object;
vec3 offset;
};
模型旋转
模型的旋转与上述的构建过程类似,不过稍微复杂。
文中给出的旋转表示方法是欧拉角表示法。当射线变换到有旋转的物体坐标系时,不仅原点位置改变,射线的方向也会改变。这一过程如下:
- 将光线的原点和方向从世界坐标系变换到物体坐标系
- 判断光线在物体坐标系内与物体是否相交以及交点在何处
- 将交点的位置以及交点处的法线从物体坐标系变换到世界坐标系
旋转同样被封装成了一个可击中对象,相当于一个实例,这部分的核心代码如下:
class rotate_y : public hittable {
public:
bool hit(const ray& r, interval ray_t, hit_record& rec) const override {
// 将光线从世界坐标系转换到物体局部坐标系
auto origin = r.origin();
auto direction = r.direction();
origin[0] = cos_theta*r.origin()[0] - sin_theta*r.origin()[2];
origin[2] = sin_theta*r.origin()[0] + cos_theta*r.origin()[2];
direction[0] = cos_theta*r.direction()[0] - sin_theta*r.direction()[2];
direction[2] = sin_theta*r.direction()[0] + cos_theta*r.direction()[2];
ray rotated_r(origin, direction, r.time());
// 判断是否有交点以及交点在何处
if (!object->hit(rotated_r, ray_t, rec))
return false;
// 将交点从物体局部坐标系转换到世界坐标系
auto p = rec.p;
p[0] = cos_theta*rec.p[0] + sin_theta*rec.p[2];
p[2] = -sin_theta*rec.p[0] + cos_theta*rec.p[2];
// 将交点处的法线从物体局部坐标系转换到世界坐标系
auto normal = rec.normal
normal[0] = cos_theta*rec.normal[0] + sin_theta*rec.normal[2];
normal[2] = -sin_theta*rec.normal[0] + cos_theta*rec.normal[2];
rec.p = p;
rec.normal = normal;
return true;
}
};
运用平移和旋转,渲染出的cornell场景如下:
体积物体
这一部分将的是对于类似雾这种对象的光线追踪渲染,不过为了简便,文中只举例了密度恒定,且边界不变的情况。
光线在射向这类物体时,有概率直接穿透,也有概率散射开来。
对于这样的物体,文中主要设置了两种参数,一个是密度,另一个是边界。
在做射线求交运算时,会设置计算两个碰撞点,分别代表射入和射出的点,并根据密度参数和随机值,计算得出一个新的碰撞点,用来做计算。如果这个点不在体积内,则判定这个射线没有和物体相交,如果在体积内,则判定为相交,进行计算。
判定相交时,射入的光线会在碰撞点处随机散射。
这一步的渲染效果:
最终效果
和上一部教程一样,作者给出了一个大场景,渲染出一个最终效果。
这里我为了能够尽快得出渲染结果,将采样次数降低,牺牲了质量,此时的渲染结果如下:
完整代码
这一次同样上传在网盘上:
链接:https://pan.baidu.com/s/1hspYR2VGNlxynRJYa9jHug?pwd=qyfj
提取码:qyfj
–来自百度网盘超级会员V6的分享
ps: 只分享了源码,没有什么依赖库,应该可以直接跑出ppm格式的图片。
参考
https://www.cnblogs.com/wickedpriest/p/12269564.html
https://baike.baidu.com/item/%E5%8C%85%E5%9B%B4%E7%9B%92/4562345
https://blog.csdn.net/weixin_44176696/article/details/118655688
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!