yolov8 pose coco2yolo

2023-12-15 01:11:19
import os
import json
from tqdm import tqdm
import argparse

parser = argparse.ArgumentParser()
# 这里根据自己的json文件位置,换成自己的就行
parser.add_argument('--json_path',
                    default=r'C:\Users\k167\Desktop\dataset\person_dataset/instances_val2017_person_3dataset_merged_hip.json', type=str,
                    help="input: coco format(json)")
# 这里设置.txt文件保存位置
parser.add_argument('--save_path', default=r'C:\Users\k167\Desktop\dataset\person_dataset', type=str,
                    help="specify where to save the output dir of labels")
parser.add_argument('--root', default=r'C:\Users\k167\Desktop\dataset\person_dataset', type=str,
                    help="specify where to save the output dir of labels")
arg = parser.parse_args()


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = box[0] + box[2] / 2.0
    y = box[1] + box[3] / 2.0
    w = box[2]
    h = box[3]

    x = round(x * dw, 6)
    w = round(w * dw, 6)
    y = round(y * dh, 6)
    h = round(h * dh, 6)
    return (x, y, w, h)


if __name__ == '__main__':
    json_file = arg.json_path  # COCO Object Instance 类型的标注
    ana_txt_save_path = arg.save_path  # 保存的路径
    root = arg.root

    data = json.load(open(json_file, 'r'))
    if not os.path.exists(ana_txt_save_path):
        os.makedirs(ana_txt_save_path)

    id_map = {}  # coco数据集的id不连续!重新映射一下再输出!
    with open(os.path.join(ana_txt_save_path, 'classes.txt'), 'w') as f:
        # 写入classes.txt
        for i, category in enumerate(data['categories']):
            f.write(f"{category['name']}\n")
            id_map[category['id']] = i
    # print(id_map)
    # 这里需要根据自己的需要,更改写入图像相对路径的文件位置。
    list_file = open(os.path.join(ana_txt_save_path, 'train2017.txt'), 'w')
    for img in tqdm(data['images']):
        filename = img["file_name"]
        img_width = img["width"]
        img_height = img["height"]
        img_id = img["id"]
        head, tail = os.path.splitext(filename)
        ana_txt_name = head + ".txt"  # 对应的txt名字,与jpg一致
        # print(os.path.join(root,filename))
        # exit()
        f_txt = open(os.path.join(ana_txt_save_path, ana_txt_name), 'w')
        for ann in data['annotations']:
            if ann['image_id'] == img_id:
                box = convert((img_width, img_height), ann["bbox"])
                f_txt.write("%s %s %s %s %s" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3]))
                counter=0
                for i in range(len(ann["keypoints"])):
                    if (i+1)%3 == 0 and (ann["keypoints"][i] == 2 or ann["keypoints"][i] == 1 or ann["keypoints"][i] == 0):
                        f_txt.write(" %s " % format(ann["keypoints"][i],'6f'))
                        counter=0
                    else:
                        if counter==0:
                            f_txt.write(" %s " % round((ann["keypoints"][i] / img_width),6))
                        else:
                            f_txt.write(" %s " % round((ann["keypoints"][i] / img_height),6))
                        counter+=1
                f_txt.write("\n")
        f_txt.close()
        # 将图片的路径写入train2017或val2017的路径
        # list_file.write('E:/edgeai-yolov5-yolo-pose/coco_kpts/images/train2017/%s.jpg\n' % (head))
        list_file.write(os.path.join(root,filename)+'\n')
    list_file.close()

在这里插入图片描述
在这里插入图片描述

文章来源:https://blog.csdn.net/sun1311523821/article/details/134880192
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。