【踩坑记录】pytorch 自定义嵌套网络时部分网络输出不变的问题

2023-12-15 20:01:58

问题描述

使用如下的自定义的多层嵌套网络进行训练:

class FC1_bot(nn.Module):
    def __init__(self):
        super(FC1_bot, self).__init__()
        self.embeddings = nn.Sequential(
        	nn.Linear(10, 10)
        )
       
    def forward(self, x):
        emb = self.embeddings(x)
        return emb

    
class FC1_top(nn.Module):
    def __init__(self):
        super(FC1_top, self).__init__()
        self.prediction = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(10, 10)
        )
        
    def forward(self, x):
        logit = self.prediction(x)
        return logit


class FC1(nn.Module):
    def __init__(self, num):
        super(FC1, self).__init__()
        self.num = num

        self.bot = []
        for _ in range(num):
            self.bot.append(FC1_bot())

        self.top = FC1_top()
        
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        x = list(x)
        emb = []
        for i in range(self.num):
            emb.append(self.bot[i](x[i]))

        agg_emb = self._aggregate(emb)
        logit = self.top(agg_emb)

        pred = self.softmax(logit)

        return emb, pred
    
    def _aggregate(self, x):
        # Note: x is a list of tensors.
        return torch.cat(x, dim=1)

训练的代码如下:

def train(self):
	# train entire model
	self.model.train()

	for epoch in range(self.args.epochs):
		...

解决办法

需要把所有用到的模型都变成训练模式,否则只有top模型在被训练。

def train(self):
	# train entire model
	self.model.train()
	self.model.top.train()
	for i in range(self.args.num):
	    self.model.bot[i].train()

	for epoch in range(self.args.epochs):
		...

文章来源:https://blog.csdn.net/m0_46161993/article/details/135023446
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。