K-means算法通俗原理及Python与R语言的分别实现

2023-12-14 12:32:53

K均值聚类方法是一种划分聚类方法,它是将数据分成互不相交的K类。K均值法先指定聚类数,目标是使每个数据到数据点所属聚类中心的总距离变异平方和最小,规定聚类中心时则是以该类数据点的平均值作为聚类中心。

?

01K均值法原理与步骤

对于有N个数据的数据集,我们想把它们聚成K类,开始需要指定K个聚类中心,假设第i类有ni个样本数据,计算每个数据点分别到聚类中心的距离平方和,距离这里直接用的欧式距离,还有什么海明距离、街道距离、余弦相似度什么的其实都可以,这里聚类的话,欧式距离就好。

(1)、所有类别样本数等于总样本数,即每个类类是互不相同的

K-means算法通俗原理及Python与R语言的分别实现-图片1

(2)、每一类(假设是第i类)中数据点到聚类中心距离平方总和di为:

xi表示第i类各点平均值(聚类中心)

K-means算法通俗原理及Python与R语言的分别实现-图片2

(3)、K类数据点距离之和为:

K-means算法通俗原理及Python与R语言的分别实现-图片3

这样就会有一个KN的距离平方和矩阵,每一列(比如第j列)的最小值对应的行数(比如第i行)就表明:第j个数据样本属于第i类别。这样,每个数据就会分别属于不同的类别了。

K-means算法通俗原理及Python与R语言的分别实现-图片4

比如,表格中红色部分数据点x2到第一类的聚类中心距离最小,则x2就属于第一类。

K均值步骤:

  1. 随机选取K个数据点作为(起始)聚类中心;
  2. 按照距离最近原则分配数据点到对应类;
  3. 计算每类的数据点平均值(新的聚类中心);
  4. 计算数据点到聚类中心总距离;
  5. 如果与上一次相比总距离下降,聚类中心替换;
  6. 直到总距离不再下降或者达到指定计算次数。

其实,这个过程相对比较简单,给我一组聚类中心,总能根据到聚类中心距离最小原则生成一组聚类方案,然后计算各个类别到聚类中心距离总和是否下降,如果距离总和下降,就继续计算每类数据点平均值(新的聚类中心),对应的聚类方案要好(还是那句话:给我一组聚类中心,总能根据到聚类中心距离最小原则生成一组聚类方案),然后不断计算,直到距离总和下降幅度很小(几乎收敛),或者达到指定计算次数。

K-means算法缺点主要是:

  1. 对异常值敏感;
  2. 需要提前确定k值;
  3. 结果不稳定;

02 K均值算法Python的实现

思路:

  1. 首先用random模块产生随机聚类中心;
  2. 用numpy包简化运算;
  3. 写了一个函数实现一个中心对应一种聚类方案;
  4. 不断迭代;
  5. matplotlib包结果可视化。

代码如下:


   
   
  1. import numpy as np
  2. import random as rd
  3. import matplotlib.pyplot as plt
  4. import math
  5. #数据
  6. dat = np.array([[14,22,15,20,30,18,32,13,23,20,21,22,23,24,35,18],
  7. [15,28,18,30,35,20,30,15,25,23,24,25,26,27,30,16]])
  8. print(dat)
  9. #聚类中心#
  10. n = len(dat[0])
  11. N = len(dat)n
  12. k = 3
  13. #-------随机产生-----#
  14. center = rd.sample(range(n),k)
  15. center = np.array([dat.T[i] for i in center])
  16. print(‘初始聚类中心为:’)
  17. print(center)
  18. print(‘-----------------------’)
  19. ?
  20. #计算聚类中心
  21. def cent(x):
  22. return(sum(x)/len(x))
  23. ?
  24. #计算各点到聚类中心的距离之和
  25. def dist(x):
  26. #聚类中心
  27. m0 = cent(x)
  28. dis = sum(sum((x-m0)2))
  29. return(dis)
  30. ?
  31. #距离
  32. def f(center):
  33. c0 = []
  34. c1 = []
  35. c2 = []
  36. D = np.arange(k*n).reshape(k,n)
  37. d0 = center[0]-dat.T
  38. d1 = center[1]-dat.T
  39. d2 = center[2]-dat.T
  40. d = np.array([d0,d1,d2])
  41. for i in range(k):
  42. D[i] = sum((d[i]2).T)
  43. for i in range(n):
  44. ind = D.T[i].argmin()
  45. if(ind 0):
  46. c0.append(i)#分配类别
  47. else:
  48. if(ind 1):
  49. c1.append(i)
  50. else:
  51. c2.append(i)
  52. C0 = np.array([dat.T[i] for i in c0])
  53. C1 = np.array([dat.T[i] for i in c1])
  54. C2 = np.array([dat.T[i] for i in c2])
  55. C = [C0,C1,C2]
  56. print([c0,c1,c2])
  57. s = 0
  58. for i in C:
  59. s+=dist(i)
  60. return(s,C)
  61. ?
  62. n_max = 50
  63. #初始距离和
  64. print(‘第1次计算!’)
  65. dd,C = f(center)
  66. print(‘距离和为’+str(dd))
  67. print(‘第2次计算!’)
  68. center = [cent(i) for i in C]
  69. Dd,C = f(center)
  70. print(‘距离和为’+str(Dd))
  71. K = 3
  72. ?
  73. while(K<n_max):
  74. #两次差值很小并且计算了一定次数
  75. if(math.sqrt(dd-Dd)<1 and K>20):
  76. break;
  77. print(‘第’+str(K)+‘次计算!’)
  78. dd = Dd
  79. print(‘距离和为’+str(dd))
  80. #当前聚类中心
  81. center = [cent(i) for i in C]
  82. Dd,C = f(center)
  83. K+=1
  84. ?
  85. ?
  86. #—聚类结果可视化部分—#
  87. ?
  88. j = 0
  89. for i in C:
  90. if(j 0):
  91. plt.plot(i.T[0],i.T[1],‘ro’)
  92. if(j 1):
  93. plt.plot(i.T[0],i.T[1],‘b+’)
  94. if(j == 2):
  95. plt.plot(i.T[0],i.T[1],‘g*’)
  96. j+=1
  97. ?
  98. plt.show()

?

(1):聚类成功的例子:

对于不合适的初始随机聚类中心,一般而言不会失败,成功次数较多。

K-means算法通俗原理及Python与R语言的分别实现-图片5

可以看出,其实第五次就收敛了,共分成了三类。它们的标签序号为:

第一类:[1, 3, 8, 9, 10, 11, 12, 13];

第二类:[4, 6, 14];

第三类:[0, 2, 5, 7, 15]

聚类图:

K-means算法通俗原理及Python与R语言的分别实现-图片6

聚类结果与实际情况一致

(2):聚类失败的例子:

有时候可能会失败,运行实验了三次出现了一次败笔,迭代过程如下:

K-means算法通俗原理及Python与R语言的分别实现-图片7

散点图:

K-means算法通俗原理及Python与R语言的分别实现-图片8

聚类失败图

显然,由于初始点的随机选取不当,导致聚类严重失真!这聚类效果明显就很差,表明随机产生的初始聚类中心应该不合适,最后不管怎么迭代,都不可能生成合适的聚类了,这与k-means算法的原理确实可以解释的。这就是k-means的最显著的缺点!

03K均值算法的R语言实现

用的还是上面程序一样的数据,R语言聚类就很方便,直接调用kmeans(data,聚类数)就能方便完成:

  
  
  1. rm(list = ls())
  2. path <- ‘C:\Users\26015\Desktop\clu.txt’
  3. dat <- read.csv(path,header = FALSE)
  4. dat <- t(dat)
  5. kc <- kmeans(dat,3)
  6. summary(kc)
  7. kc

查看聚类结果:

  
  
  1. K-means clustering with 3 clusters of sizes 8, 3, 5
  2. ?
  3. Cluster means:
  4. [,1] [,2]
  5. 1 21.87500 26.00000
  6. 2 32.33333 31.66667
  7. 3 15.60000 16.80000

聚成3类,分别有8,3,5个数据

Clustering vector:

V1? V2? V3? V4? V5? V6? V7? V8? V9

3?? 1?? 3??1?? 2?? 3?? 2?? 3??1

V10 V11 V12 V13 V14 V15 V16

1?? 1?? 1?? 1?? 1?? 2?? 3

第一类:2,4,9,10,11,12,13,14

第二类:1,3,6,8,16;

第三类:5,7,15

由于Python下标是从“0”开始,所以两种方法聚类结果实际上是一样

文章来源:https://blog.csdn.net/qq_15719613/article/details/134868287
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。