人工智能-模型训练之多GPU的简洁实现
模型训练之多GPU的简洁实现
每个新模型的并行计算都从零开始实现是无趣的。此外,优化同步工具以获得高性能也是有好处的。下面我们将展示如何使用深度学习框架的高级API来实现这一点。本代码至少需要两个GPU来运行。
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
简单网络
让我们使用一个比?LeNet更有意义的网络,它依然能够容易地和快速地训练。我们选择的是?(He et al., 2016)中的ResNet-18。因为输入的图像很小,所以稍微修改了一下。区别在于,我们在开始时使用了更小的卷积核、步长和填充,而且删除了最大汇聚层。
#@save
def resnet18(num_classes):
"""稍加修改的ResNet-18模型"""
def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.Sequential()
for i in range(num_residuals):
if i == 0 and not first_block:
blk.add(d2l.Residual(
num_channels, use_1x1conv=True, strides=2))
else:
blk.add(d2l.Residual(num_channels))
return blk
net = nn.Sequential()
# 该模型使用了更小的卷积核、步长和填充,而且删除了最大汇聚层
net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),
nn.BatchNorm(), nn.Activation('relu'))
net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))
net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
return net
网络初始化
initialize
函数允许我们在所选设备上初始化参数。这个函数在多个设备上初始化网络时特别方便。下面在实践中试一试它的运作方式。
net = resnet18(10)
# 获取GPU列表
devices = d2l.try_all_gpus()
# 初始化网络的所有参数
net.initialize(init=init.Normal(sigma=0.01), ctx=devices)
[07:14:36] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU [07:14:36] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for GPU [07:14:36] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for GPU
引入的split_and_load
函数可以切分一个小批量数据,并将切分后的分块数据复制到devices
变量提供的设备列表中。网络实例自动使用适当的GPU来计算前向传播的值。我们将在下面生成4个观测值,并在GPU上将它们拆分。
x = np.random.uniform(size=(4, 1, 28, 28))
x_shards = gluon.utils.split_and_load(x, devices)
net(x_shards[0]), net(x_shards[1])
(array([[ 2.2610207e-06, 2.2045981e-06, -5.4046786e-06, 1.2869955e-06, 5.1373163e-06, -3.8297967e-06, 1.4339059e-07, 5.4683451e-06, -2.8279192e-06, -3.9651104e-06], [ 2.0698672e-06, 2.0084667e-06, -5.6382510e-06, 1.0498458e-06, 5.5506434e-06, -4.1065491e-06, 6.0830087e-07, 5.4521784e-06, -3.7365021e-06, -4.1891640e-06]], ctx=gpu(0)), array([[ 2.4629783e-06, 2.6015525e-06, -5.4362617e-06, 1.2938218e-06, 5.6387889e-06, -4.1360108e-06, 3.5758853e-07, 5.5125256e-06, -3.1957325e-06, -4.2976326e-06], [ 1.9431673e-06, 2.2600434e-06, -5.2698201e-06, 1.4807417e-06, 5.4830934e-06, -3.9678889e-06, 7.5751018e-08, 5.6764356e-06, -3.2530229e-06, -4.0943951e-06]], ctx=gpu(1)))
一旦数据通过网络,网络对应的参数就会在有数据通过的设备上初始化。这意味着初始化是基于每个设备进行的。由于我们选择的是GPU0和GPU1,所以网络只在这两个GPU上初始化,而不是在CPU上初始化。事实上,CPU上甚至没有这些参数。我们可以通过打印参数和观察可能出现的任何错误来验证这一点。
weight = net[0].params.get('weight')
try:
weight.data()
except RuntimeError:
print('not initialized on cpu')
weight.data(devices[0])[0], weight.data(devices[1])[0]
(array([[[ 0.01382882, -0.01183044, 0.01417865], [-0.00319718, 0.00439528, 0.02562625], [-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(0)), array([[[ 0.01382882, -0.01183044, 0.01417865], [-0.00319718, 0.00439528, 0.02562625], [-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(1)))
evaluate_accuracy_gpu
函数的替代,代码的主要区别在于在调用网络之前拆分了一个小批量,其他在本质上是一样的。
#@save
def evaluate_accuracy_gpus(net, data_iter, split_f=d2l.split_batch):
"""使用多个GPU计算数据集上模型的精度"""
# 查询设备列表
devices = list(net.collect_params().values())[0].list_ctx()
# 正确预测的数量,预测的总数量
metric = d2l.Accumulator(2)
for features, labels in data_iter:
X_shards, y_shards = split_f(features, labels, devices)
# 并行运行
pred_shards = [net(X_shard) for X_shard in X_shards]
metric.add(sum(float(d2l.accuracy(pred_shard, y_shard)) for
pred_shard, y_shard in zip(
pred_shards, y_shards)), labels.size)
return metric[0] / metric[1]
?
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!