opencv入门到精通——形态学转换

2023-12-25 20:32:05

目录

目标

理论

1. 侵蚀

2. 扩张

3. 开运算

4. 闭运算

5. 形态学梯度

6. 顶帽

7. 黑帽

结构元素


目标

在这一章当中, 我们将学习不同的形态学操作,例如侵蚀,膨胀,开运算,闭运算等。我们将看到不同的功能,例如:cv.erode(),cv.dilate(),?cv.morphologyEx()等。

理论

形态变换是一些基于图像形状的简单操作。通常在二进制图像上执行。它需要两个输入,一个是我们的原始图像,第二个是决定操作性质的结构元素内核。两种基本的形态学算子是侵蚀和膨胀。然后,它的变体形式(如“打开”,“关闭”,“渐变”等)也开始起作用。在下图的帮助下,我们将一一看到它们:

图片

1. 侵蚀

侵蚀的基本思想就像土壤侵蚀一样,它侵蚀前景物体的边界(尽量使前景保持白色)。它是做什么的呢?内核滑动通过图像(在2D卷积中)。原始图像中的一个像素(无论是1还是0)只有当内核下的所有像素都是1时才被认为是1,否则它就会被侵蚀(变成0)。

结果是,根据内核的大小,边界附近的所有像素都会被丢弃。因此,前景物体的厚度或大小减小,或只是图像中的白色区域减小。它有助于去除小的白色噪声(正如我们在颜色空间章节中看到的),分离两个连接的对象等。

在这里,作为一个例子,我将使用一个5x5内核,它包含了所有的1。让我们看看它是如何工作的:

 

import?cv2?as?cv
import?numpy?as?np
img?=?cv.imread('j.png',0)
kernel?=?np.ones((5,5),np.uint8)
erosion?=?cv.erode(img,kernel,iterations?=?1)

结果:

图片

2. 扩张

它与侵蚀正好相反。如果内核下的至少一个像素为“ 1”,则像素元素为“ 1”。因此,它会增加图像中的白色区域或增加前景对象的大小。通常,在消除噪音的情况下,腐蚀后会膨胀。因为腐蚀会消除白噪声,但也会缩小物体。因此,我们对其进行了扩展。由于噪音消失了,它们不会回来,但是我们的目标区域增加了。在连接对象的损坏部分时也很有用。

 

dilation?=?cv.dilate(img,kernel,iterations?=?1)?

结果:

图片

3. 开运算

开放只是侵蚀然后扩张的另一个名称。如上文所述,它对于消除噪音很有用。在这里,我们使用函数cv.morphologyEx()

 

opening?=?cv.morphologyEx(img,?cv.MORPH_OPEN,?kernel)?

结果:

图片

4. 闭运算

闭运算与开运算相反,先扩张然后再侵蚀。在关闭前景对象内部的小孔或对象上的小黑点时很有用。

 

closing?=?cv.morphologyEx(img,?cv.MORPH_CLOSE,?kernel)?

图片

5. 形态学梯度

这是图像扩张和侵蚀之间的区别。

结果将看起来像对象的轮廓。

 

gradient?=?cv.morphologyEx(img,?cv.MORPH_GRADIENT,?kernel)?

![Uploading gradient.png… (2yruxk2ei)]()

6. 顶帽

它是输入图像和图像开运算之差。下面的示例针对9x9内核完成。

 

tophat?=?cv.morphologyEx(img,?cv.MORPH_TOPHAT,?kernel)?

结果:

图片

7. 黑帽

这是输入图像和图像闭运算之差。

 

blackhat?=?cv.morphologyEx(img,?cv.MORPH_BLACKHAT,?kernel)?

结果:

图片

结构元素

在Numpy的帮助下,我们在前面的示例中手动创建了一个结构元素。它是矩形。但是在某些情况下,您可能需要椭圆形/圆形的内核。因此,为此,OpenCV具有一个函数cv.getStructuringElement()。您只需传递内核的形状和大小,即可获得所需的内核。

 

#?矩形内核
>>>?cv.getStructuringElement(cv.MORPH_RECT,(5,5))
array([[1,?1,?1,?1,?1],
???????[1,?1,?1,?1,?1],
???????[1,?1,?1,?1,?1],
???????[1,?1,?1,?1,?1],
???????[1,?1,?1,?1,?1]],?dtype=uint8)
#?椭圆内核
>>>?cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
array([[0,?0,?1,?0,?0],
???????[1,?1,?1,?1,?1],
???????[1,?1,?1,?1,?1],
???????[1,?1,?1,?1,?1],
???????[0,?0,?1,?0,?0]],?dtype=uint8)
#?十字内核
>>>?cv.getStructuringElement(cv.MORPH_CROSS,(5,5))
array([[0,?0,?1,?0,?0],
???????[0,?0,?1,?0,?0],
???????[1,?1,?1,?1,?1],
???????[0,?0,?1,?0,?0],
???????[0,?0,?1,?0,?0]],?dtype=uint8)

文章来源:https://blog.csdn.net/weixin_45303602/article/details/135208082
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。