两种方法求解平方根 -- 牛顿法、二分法
Leetcode相关题目:
69. x 的平方根
牛顿法 迭代公式:
以求解 a a a 的平方根为例,可转换为求解方程 f ( x ) f(x) f(x)的根。 f ( x ) = x 2 ? a f(x)=x^2-a f(x)=x2?a
迭代公式如下: x n + 1 = x n ? f ( x n ) f ′ ( x n ) x_{n+1} = x_n - \frac {f(x_n)}{f'(x_n)} xn+1?=xn??f′(xn?)f(xn?)?
代入
f
(
x
)
f(x)
f(x) 得:
x
n
+
1
=
x
n
?
x
n
2
?
a
2
?
x
n
=
x
n
+
a
/
x
n
2
x_{n+1} = x_n - \frac {x_n^2-a}{2*x_n} = \frac{x_n+a/x_n}{2}
xn+1?=xn??2?xn?xn2??a?=2xn?+a/xn??
停止条件为:
∣
x
n
+
1
?
x
n
∣
<
?
|x_{n+1} - x_n| < \epsilon
∣xn+1??xn?∣<?
class MySqrt:
"""
69. x 的平方根
https://leetcode.cn/problems/sqrtx/description/
"""
def solution1(self, x: int) -> int:
"""
牛顿迭代法,递归
:param x:
:return:
"""
self.a = x
if x == 0:
return 0
return int(self.sqrts(x))
def sqrts(self, x: float):
res = (x + self.a / x) / 2
if res == x:
return x
else:
return self.sqrts(res)
def solution2(self, a: int) -> int:
"""
牛顿法,迭代
:param a:
:return:
"""
if a == 0:
return 0
x = float(a)
while (x + a / x) / 2 != x:
x = (x + a / x) / 2
return int(x)
def solution3(self, x: int) -> int:
"""
二分法
:param a:
:return:
"""
l, r, ans = 0, x, -1
while l <= r:
mid = l + (r - l) // 2
if mid * mid <= x:
ans = mid
l = mid + 1
else:
r = mid - 1
return ans
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!