代码随想录算法训练营 | day57 动态规划 647.回文子串,516.最长回文子序列

2023-12-21 16:52:41

刷题

647.回文子串

题目链接 | 文章讲解 | 视频讲解

题目:给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

  • 输入:"abc"

  • 输出:3

  • 解释:三个回文子串: "a", "b", "c"

示例 2:

  • 输入:"aaa"

  • 输出:6

  • 解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

提示:输入的字符串长度不会超过 1000 。

思路及实现

动规五部曲:

1.确定dp数组(dp table)以及下标的含义

如果大家做了很多这种子序列相关的题目,在定义dp数组的时候 很自然就会想题目求什么,我们就如何定义dp数组。

绝大多数题目确实是这样,不过本题如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。

dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。

所以我们要看回文串的性质。 如图:

我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。

那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。

所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。

布尔类型的dp[i] [j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i] [j]为true,否则为false。

2.确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i] [j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串

  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串

  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dpi + 1是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {
 ? ?if (j - i <= 1) { // 情况一 和 情况二
 ? ? ? ?result++;
 ? ? ? ?dp[i][j] = true;
 ?  } else if (dp[i + 1][j - 1]) { // 情况三
 ? ? ? ?result++;
 ? ? ? ?dp[i][j] = true;
 ?  }
}

result就是统计回文子串的数量。

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i] [j]初始化的时候,就初始为false。

3.dp数组如何初始化

dp[i] [j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

所以dp[i] [j]初始化为false。

4.确定遍历顺序

遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1] [j - 1]是否为true,在对dp[i] [j]进行赋值true的。

dp[i + 1] [j - 1] 在 dp[i] [j]的左下角,如图:

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1] [j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1] [j - 1]都是经过计算的

有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1] [j - 1]都是经过计算的。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) { ?// 注意遍历顺序
 ? ?for (int j = i; j < s.size(); j++) {
 ? ? ? ?if (s[i] == s[j]) {
 ? ? ? ? ? ?if (j - i <= 1) { // 情况一 和 情况二
 ? ? ? ? ? ? ? ?result++;
 ? ? ? ? ? ? ? ?dp[i][j] = true;
 ? ? ? ? ?  } else if (dp[i + 1][j - 1]) { // 情况三
 ? ? ? ? ? ? ? ?result++;
 ? ? ? ? ? ? ? ?dp[i][j] = true;
 ? ? ? ? ?  }
 ? ? ?  }
 ?  }
}

5.举例推导dp数组

举例,输入:"aaa",dp[i] [j]状态如下:

图中有6个true,所以就是有6个回文子串。

注意因为dp[i] [j]的定义,所以j一定是大于等于i的,那么在填充dpi的时候一定是只填充右上半部分

以上分析完毕,代码如下:

class Solution {
 ? ?public int countSubstrings(String s) {
 ? ? ? ?char[] chars = s.toCharArray();
 ? ? ? ?int len = chars.length;
 ? ? ? ?boolean[][] dp = new boolean[len][len];
 ? ? ? ?int result = 0;
 ? ? ? ?for (int i = len - 1; i >= 0; i--) {
 ? ? ? ? ? ?for (int j = i; j < len; j++) {
 ? ? ? ? ? ? ? ?if (chars[i] == chars[j]) {
 ? ? ? ? ? ? ? ? ? ?if (j - i <= 1) { // 情况一 和 情况二
 ? ? ? ? ? ? ? ? ? ? ? ?result++;
 ? ? ? ? ? ? ? ? ? ? ? ?dp[i][j] = true;
 ? ? ? ? ? ? ? ? ?  } else if (dp[i + 1][j - 1]) { //情况三
 ? ? ? ? ? ? ? ? ? ? ? ?result++;
 ? ? ? ? ? ? ? ? ? ? ? ?dp[i][j] = true;
 ? ? ? ? ? ? ? ? ?  }
 ? ? ? ? ? ? ?  }
 ? ? ? ? ?  }
 ? ? ?  }
 ? ? ? ?return result;
 ?  }
}

516.最长回文子序列

题目链接 | 文章讲解 | 视频讲解

题目:给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bbbb"。

示例 2: 输入:"cbbd" 输出: 2 一个可能的最长回文子序列为 "bb"。

提示:

  • 1 <= s.length <= 1000

  • s 只包含小写英文字母

思路及实现

回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。

回文子串,可以做这两题:

  • 647.回文子串

  • 5.最长回文子串

思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i] [j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i] [j]

2.确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i] [j] = dp[i + 1] [j - 1] + 2;

如图:

(如果这里看不懂,回忆一下dpi的定义)

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1] [j]。

加入s[i]的回文子序列长度为dp[i] [j - 1]。

那么dp[i] [j]一定是取最大的,即:dp[i] [j] = max(dp[i + 1] [j], dp[i] [j - 1]);

代码如下:

if (s[i] == s[j]) {
 ? ?dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
 ? ?dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}

3.dp数组如何初始化

首先要考虑当i 和j 相同的情况,从递推公式:dp[i] [j] = dp[i + 1] [j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i] [j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i] [j]初始为0就行,这样递推公式:dp[i] [j] = max(dp[i + 1] [j], dp[i] [j - 1]); 中dp[i] [j]才不会被初始值覆盖。

4.确定遍历顺序

从递归公式中,可以看出,dp[i] [j] 依赖于 dp[i + 1] [j - 1] ,dp[i + 1] [j] 和 dp[i] [j - 1],如图:

所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

j的话,可以正常从左向右遍历。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {
 ? ?for (int j = i + 1; j < s.size(); j++) {
 ? ? ? ?if (s[i] == s[j]) {
 ? ? ? ? ? ?dp[i][j] = dp[i + 1][j - 1] + 2;
 ? ? ?  } else {
 ? ? ? ? ? ?dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
 ? ? ?  }
 ?  }
}

5.举例推导dp数组

输入s:"cbbd" 为例,dp数组状态如图:

红色框即:dp[0] [s.size() - 1]; 为最终结果。

以上分析完毕,代码如下:

public class Solution {
    public int longestPalindromeSubseq(String s) {
        int len = s.length();
        int[][] dp = new int[len + 1][len + 1];
        for (int i = len - 1; i >= 0; i--) { // 从后往前遍历 保证情况不漏
            dp[i][i] = 1; // 初始化
            for (int j = i + 1; j < len; j++) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], Math.max(dp[i][j], dp[i][j - 1]));
                }
            }
        }
        return dp[0][len - 1];
    }
}

文章来源:https://blog.csdn.net/weixin_45011378/article/details/135132950
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。