Transform环境搭建与代码调试——Attention Is All Y ou Need

2023-12-28 13:13:16

1、源代码

2、环境搭建

conda create -n transform python=3.8 -y
conda activate transform
cd /media/lhy/Transforms/annotatedtransformer

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# # Uncomment for colab

pip install -q torchdata==0.3.0 torchtext==0.12 spacy==3.2 altair GPUtil  -i https://pypi.tuna.tsinghua.edu.cn/simple
python -m spacy download de_core_news_sm
python -m spacy download en_core_web_sm
#或者离线下载
pip install de_core_news_sm-3.2.0-py3-none-any.whl
pip install en_core_web_sm-3.2.0-py3-none-any.whl

3、构建Teamsform模型(Model Architecture)

1、编码器、解码器以及预测部分

class EncoderDecoder(nn.Module):
    """
    A standard Encoder-Decoder architecture. Base for this and many
    other models.
    """

    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator

    def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)

    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)

    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

class Generator(nn.Module):
    "Define standard linear + softmax generation step."

    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        return log_softmax(self.proj(x), dim=-1)

Transformer遵循这个整体架构,使用堆叠的自关注层和点方向层,完全连接编码器和解码器层,分别如图1的左半部分和右半部分所示。
在这里插入图片描述

2、Encoder and Decoder Stacks

def clones(module, N):
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
    "Core encoder is a stack of N layers"

    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)

    def forward(self, x, mask):
        "Pass the input (and mask) through each layer in turn."
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

class LayerNorm(nn.Module):
    "Construct a layernorm module (See citation for details)."

    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """

    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))

class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"

    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)

class Decoder(nn.Module):
    "Generic N layer decoder with masking."

    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)

    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)

class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"

    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)

    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)

def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)#batch=1
    subsequent_mask = torch.triu(torch.ones(attn_shape), diagonal=1).type(
        torch.uint8
    )#保留主对角线以上的数据
    return subsequent_mask == 0

结果保留主对角线及以下的数据
在这里插入图片描述

在这里插入图片描述

attention

def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = scores.softmax(dim=-1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)

        # 1) Do all the linear projections in batch from d_model => h x d_k
        query, key, value = [
            lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
            for lin, x in zip(self.linears, (query, key, value))
        ]

        # 2) Apply attention on all the projected vectors in batch.
        x, self.attn = attention(
            query, key, value, mask=mask, dropout=self.dropout
        )

        # 3) "Concat" using a view and apply a final linear.
        x = (
            x.transpose(1, 2)
            .contiguous()
            .view(nbatches, -1, self.h * self.d_k)
        )
        del query
        del key
        del value
        return self.linears[-1](x)

FFN

class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."

    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(self.w_1(x).relu()))

Embeddings and Softmax

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)

Positional Encoding

class PositionalEncoding(nn.Module):
    "Implement the PE function."

    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)
        )
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer("pe", pe)

    def forward(self, x):
        x = x + self.pe[:, : x.size(1)].requires_grad_(False)
        return self.dropout(x)

在这里插入图片描述

Optimizer

在这里插入图片描述
这对应于在第一个warmup_steps训练步骤中线性增加学习率,然后按步数的倒数平方根成比例地降低学习率。我们使用了warmup_steps = 4000。

def rate(step, model_size, factor, warmup):
    """
    we have to default the step to 1 for LambdaLR function
    to avoid zero raising to negative power.
    """
    if step == 0:
        step = 1
    return factor * (
        model_size ** (-0.5) * min(step ** (-0.5), step * warmup ** (-1.5))
    )
#---------------------------------4、测试学习率---------------------------------  
def example_learning_schedule():
    opts = [
        [512, 1, 4000],  # example 1
        [512, 1, 8000],  # example 2
        [256, 1, 4000],  # example 3
    ]

    dummy_model = torch.nn.Linear(1, 1)
    learning_rates = []

    # we have 3 examples in opts list.
    for idx, example in enumerate(opts):
        # run 20000 epoch for each example
        optimizer = torch.optim.Adam(
            dummy_model.parameters(), lr=1, betas=(0.9, 0.98), eps=1e-9
        )
        print(optimizer.state_dict())


        lr_scheduler = LambdaLR(
            optimizer=optimizer, lr_lambda=lambda step: rate(step, *example)
        )
        tmp = []
        # take 20K dummy training steps, save the learning rate at each step
        for step in range(20000):
            tmp.append(optimizer.param_groups[0]["lr"])
            optimizer.step()
            lr_scheduler.step()
        learning_rates.append(tmp)

    learning_rates = torch.tensor(learning_rates)

    # Enable altair to handle more than 5000 rows
    alt.data_transformers.disable_max_rows()

    opts_data = pd.concat(
        [
            pd.DataFrame(
                {
                    "Learning Rate": learning_rates[warmup_idx, :],
                    "model_size:warmup": ["512:4000", "512:8000", "256:4000"][
                        warmup_idx
                    ],
                    "step": range(20000),
                }
            )
            for warmup_idx in [0, 1, 2]
        ]
    )

    chart=(alt.Chart(opts_data)
           .mark_line()
           .properties(width=600)
           .encode(x="step", y="Learning Rate", color="model_size:warmup:N")
           .interactive())
    
    # 展示数据,调用display()方法
    altair_viewer.show(chart)

在这里插入图片描述

Regularization

在训练过程中,我们使用值es =0.1的平滑标签。这损害了困惑,因为模型学的更加不确定,但提高了准确性和BLeU分数。
Kullback-Leibler散度损失。

class LabelSmoothing(nn.Module):
    "Implement label smoothing."

    def __init__(self, size, padding_idx, smoothing=0.0):
        super(LabelSmoothing, self).__init__()
        self.criterion = nn.KLDivLoss(reduction="sum")
        self.padding_idx = padding_idx
        self.confidence = 1.0 - smoothing
        self.smoothing = smoothing
        self.size = size
        self.true_dist = None

    def forward(self, x, target):
        assert x.size(1) == self.size
        true_dist = x.data.clone()
        true_dist.fill_(self.smoothing / (self.size - 2))
        true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
        true_dist[:, self.padding_idx] = 0
        mask = torch.nonzero(target.data == self.padding_idx)
        if mask.dim() > 0:
            true_dist.index_fill_(0, mask.squeeze(), 0.0)
        self.true_dist = true_dist
        return self.criterion(x, true_dist.clone().detach())
#-------------------5、测试 正则化标签平滑-------------------------------------
def example_label_smoothing():
    
    crit = LabelSmoothing(5, 0, 0.4)
    predict = torch.FloatTensor(
        [
            [0, 0.2, 0.7, 0.1, 0],
            [0, 0.2, 0.7, 0.1, 0],
            [0, 0.2, 0.7, 0.1, 0],
            [0, 0.2, 0.7, 0.1, 0],
            [0, 0.2, 0.7, 0.1, 0],
        ]
    )
    crit(x=predict.log(), target=torch.LongTensor([2, 1, 0, 3, 3]))
    LS_data = pd.concat(
        [
            pd.DataFrame(
                {
                    "target distribution": crit.true_dist[x, y].flatten(),
                    "columns": y,
                    "rows": x,
                }
            )
            for y in range(5)
            for x in range(5)
        ]
    )

    chart= (
        alt.Chart(LS_data)
        .mark_rect(color="Blue", opacity=1)
        .properties(height=200, width=200)
        .encode(
            alt.X("columns:O", title=None),
            alt.Y("rows:O", title=None),
            alt.Color(
                "target distribution:Q", scale=alt.Scale(scheme="viridis")
            ),
        )
        .interactive()
    )

    # 展示数据,调用display()方法
    altair_viewer.show(chart)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

数据加载解析

模型训练解析

模型测试解析

问题

1、无法从 http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz 获取文件。[请求异常] 无

离线下载放入缓存
在这里插入图片描述
或者修改URL
在这里插入图片描述

2、

在这里插入图片描述

pip install altair_viewer==0.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

文章来源:https://blog.csdn.net/qq_41627642/article/details/133157657
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。