鸿蒙ArkTS基础类库——线性容器
容器类库概述
- 容器类库,用于存储各种数据类型的元素,并具备一系列处理数据元素的方法,作为纯数据结构容器来使用具有一定的优势。
- 容器类采用了类似静态语言的方式来实现,并通过对存储位置以及属性的限制,让每种类型的数据都能在完成自身功能的基础上去除冗余逻辑,保证了数据的高效访问,提升了应用的性能。
- 当前提供了线性和非线性两类容器,共14种。每种容器都有自身的特性及使用场景,详情请参见线性容器和非线性容器。
线性容器
线性容器实现能按顺序访问的数据结构,其底层主要通过数组实现,包括ArrayList、Vector、List、LinkedList、Deque、Queue、Stack七种。
线性容器,充分考虑了数据访问的速度,运行时(Runtime)通过一条字节码指令就可以完成增、删、改、查等操作。
ArrayList
ArrayList即动态数组,可用来构造全局的数组对象。 当需要频繁读取集合中的元素时,推荐使用ArrayList。 ArrayList依据泛型定义,要求存储位置是一片连续的内存空间,初始容量大小为10,并支持动态扩容,每次扩容大小为原始容量的1.5倍。 ArrayList进行增、删、改、查操作的常用API如下:
操作 | 描述 |
---|---|
增加元素 | 通过add(element: T)函数每次在数组尾部增加一个元素。 |
通过insert(element: T, index: number)在指定位置插入一个元素。 | |
访问元素 | 通过arr[index]获取指定index对应的value值,通过指令获取保证访问速度。 |
通过forEach(callbackFn: (value: T, index?: number, arrlist?: ArrayList) => void, thisArg?: Object): void访问整个ArrayList容器的元素。 | |
通过Symbol.iterator:IterableIterator迭代器进行数据访问。 | |
修改元素 | 通过arr[index] = xxx修改指定index位置对应的value值。 |
删除元素 | 通过remove(element: T)删除第一个匹配到的元素。 |
通过removeByRange(fromIndex: number, toIndex:number)删除指定范围内的元素。 |
Vector
Vector是指连续存储结构,可用来构造全局的数组对象。Vector依据泛型定义,要求存储位置是一片连续的内存空间,初始容量大小为10,并支持动态扩容,每次扩容大小为原始容量的2倍。 Vector和ArrayList相似,都是基于数组实现,但Vector提供了更多操作数组的接口。Vector在支持操作符访问的基础上,还增加了get/set接口,提供更为完善的校验及容错机制,满足用户不同场景下的需求。 API version 9开始,该接口不再维护,推荐使用ArrayList。 Vector进行增、删、改、查操作的常用API如下:
操作 | 描述 |
---|---|
增加元素 | 通过add(element: T)函数每次在数组尾部增加一个元素。 |
通过insert(element: T, index: number)在指定位置插入一个元素。 | |
访问元素 | 通过vec[index]获取指定index对应的value值,通过指令获取保证访问速度。 |
通过get(index: number)获取指定index位置对应的元素。 | |
通过getLastElement()获取最后一个元素。 | |
通过getIndexOf(element:T)获取第一个匹配到元素的位置。 | |
通过getLastIndexOf(element:T)获取最后一个匹配到元素的位置。 | |
通过forEach(callbackFn: (value: T, index?: number, Vector?: Vector) => void, thisArg?: Object)访问整个Vector的元素。 | |
通过Symbol.iterator:IterableIterator迭代器进行数据访问。 | |
修改元素 | 通过vec[index]=xxx修改指定index位置对应的value值。 |
通过set(index:number,element:T)修改指定index位置的元素值为element。 | |
通过setLength(newSize:number)设置Vector的长度大小。 | |
删除元素 | 通过removeByIndex(index:number)删除index位置对应的value值。 |
通过remove(element:T)删除第一个匹配到的元素。 | |
通过removeByRange(fromIndex:number,toIndex:number)删除指定范围内的元素。 |
List
List可用来构造一个单向链表对象,即只能通过头结点开始访问到尾节点。List依据泛型定义,在内存中的存储位置可以是不连续的。 List和LinkedList相比,LinkedList是双向链表,可以快速地在头尾进行增删,而List是单向链表,无法双向操作。 当需要频繁的插入删除时,推荐使用List高效操作。 可以通过get/set等接口对存储的元素进行修改,List进行增、删、改、查操作的常用API如下:
操作 | 描述 |
---|---|
增加元素 | 通过add(element: T)函数每次在数组尾部增加一个元素。 |
通过insert(element: T, index: number)在指定位置插入一个元素。 | |
访问元素 | 通过list[index]获取指定index对应的value值,通过指令获取保证访问速度。 |
通过get(index: number)获取指定index位置对应的元素。 | |
通过getFirst()获取第一个元素。 | |
通过getLast()获取最后一个元素。 | |
通过getIndexOf(element: T)获取第一个匹配到元素的位置。 | |
通过getLastIndexOf(element: T)获取最后一个匹配到元素的位置。 | |
通过forEach(callbackfn: (value:T, index?: number, list?: List)=> void,thisArg?: Object)访问整个List的元素。 | |
通过Symbol.iterator:IterableIterator迭代器进行数据访问。 | |
修改元素 | 通过list[index] = xxx修改指定index位置对应的value值。 |
通过set(index:number, element: T)修改指定index位置的元素值为element。 | |
通过replaceAllElements(callbackFn:(value: T,index?: number,list?: List)=>T,thisArg?: Object)对List内元素进行替换操作。 | |
删除元素 | 通过removeByIndex(index:number)删除index位置对应的value值。 |
通过remove(element:T)删除第一个匹配到的元素。 |
LinkedList
LinkedList可用来构造一个双向链表对象,可以在某一节点向前或者向后遍历List。LinkedList依据泛型定义,在内存中的存储位置可以是不连续的。 LinkedList和List相比,LinkedList是双向链表,可以快速地在头尾进行增删,而List是单向链表,无法双向操作。 LinkedList和ArrayList相比,插入数据效率LinkedList优于ArrayList,而查询效率ArrayList优于LinkedList。 当需要频繁的插入删除时,推荐使用LinkedList高效操作。 可以通过get/set等接口对存储的元素进行修改,LinkedList进行增、删、改、查操作的常用API如下:
操作 | 描述 |
---|---|
增加元素 | 通过add(element: T)函数每次在数组尾部增加一个元素。 |
通过insert(index: number, element: T)在指定位置插入一个元素。 | |
访问元素 | 通过list[index]获取指定index对应的value值,通过指令获取保证访问速度。 |
通过get(index: number)获取指定index位置对应的元素。 | |
通过getFirst()获取第一个元素。 | |
通过getLast()获取最后一个元素。 | |
通过getIndexOf(element: T)获取第一个匹配到元素的位置。 | |
通过getLastIndexOf(element: T)获取最后一个匹配到元素的位置。 | |
通过forEach(callbackFn: (value: T, index?: number, list?: LinkedList) => void, thisArg?: Object)访问整个LinkedList的元素。 | |
通过Symbol.iterator:IterableIterator迭代器进行数据访问。 | |
修改元素 | 通过list[index]=xxx修改指定index位置对应的value值。 |
通过set(index: number,element: T)修改指定index位置的元素值为element。 | |
删除元素 | 通过removeByIndex(index: number)删除index位置对应的value值。 |
通过remove(element: T)删除第一个匹配到的元素。 |
Deque
Deque可用来构造双端队列对象,存储元素遵循先进先出以及先进后出的规则,双端队列可以分别从队头或者队尾进行访问。 Deque依据泛型定义,要求存储位置是一片连续的内存空间,其初始容量大小为8,并支持动态扩容,每次扩容大小为原始容量的2倍。Deque底层采用循环队列实现,入队及出队操作效率都比较高。 Deque和Queue相比,Queue的特点是先进先出,只能在头部删除元素,尾部增加元素。 Deque和Vector相比,它们都支持在两端增删元素,但Deque不能进行中间插入的操作。对头部元素的插入删除效率高于Vector,而Vector访问元素的效率高于Deque。 需要频繁在集合两端进行增删元素的操作时,推荐使用Deque。 Deque进行增、删、改、查操作的常用API如下:
操作 | 描述 |
---|---|
增加元素 | 通过insertFront(element: T)函数每次在队头增加一个元素。 |
增加元素 | 通过insertEnd(element: T)函数每次在队尾增加一个元素。 |
访问元素 | 通过getFirst()获取队首元素的value值,但是不进行出队操作。 |
通过getLast()获取队尾元素的value值,但是不进行出队操作。 | |
通过popFirst()获取队首元素的value值,并进行出队操作。 | |
通过popLast()获取队尾元素的value值,并进行出队操作。 | |
通过forEach(callbackFn:(value: T, index?: number, deque?: Deque) => void, thisArg?: Object)访问整个Deque的元素。 | |
通过Symbol.iterator:IterableIterator迭代器进行数据访问。 | |
修改元素 | 通过forEach(callbackFn:(value: T, index?: number, deque?: Deque)=> void, thisArg?: Object)对队列进行修改操作。 |
删除元素 | 通过popFirst()对队首元素进行出队操作并删除。 |
通过popLast()对队尾元素进行出队操作并删除。 |
Queue
Queue可用来构造队列对象,存储元素遵循先进先出的规则。 Queue依据泛型定义,要求存储位置是一片连续的内存空间,初始容量大小为8,并支持动态扩容,每次扩容大小为原始容量的2倍。 Queue底层采用循环队列实现,入队及出队操作效率都比较高。 Queue和Deque相比,Queue只能在一端删除一端增加,Deque可以两端增删。 一般符合先进先出的场景可以使用Queue。 Queue进行增、删、改、查操作的常用API如下:
操作 | 描述 |
---|---|
增加元素 | 通过add(element: T)函数每次在队尾增加一个元素。 |
访问元素 | 通过getFirst()获取队首元素的value值,但是不进行出队操作。 |
通过pop()获取队首元素的value值,并进行出队操作。 | |
通过forEach(callbackFn: (value: T, index?: number, queue?: Queue) => void,thisArg?: Object)访问整个Queue的元素。 | |
通过Symbol.iterator:IterableIterator迭代器进行数据访问。 | |
修改元素 | 通过forEach(callbackFn:(value: T, index?: number, queue?: Queue) => void,thisArg?: Object)对队列进行修改操作。 |
删除元素 | 通过pop()对队首进行出队操作并删除。 |
Stack
Stack可用来构造栈对象,存储元素遵循先进后出的规则。 Stack依据泛型定义,要求存储位置是一片连续的内存空间,初始容量大小为8,并支持动态扩容,每次扩容大小为原始容量的1.5倍。Stack底层基于数组实现,入栈出栈均从数组的一端操作。 Stack和Queue相比,Queue基于循环队列实现,只能在一端删除,另一端插入,而Stack都在一端操作。 一般符合先进后出的场景可以使用Stack。 Stack进行增、删、改、查操作的常用API如下:
操作 | 描述 |
---|---|
增加元素 | 通过push(item: T)函数每次在栈顶增加一个元素。 |
访问元素 | 通过peek()获取栈顶元素的value值,但是不进行出栈操作。 |
通过pop()获取栈顶的value值,并进行出栈操作。 | |
通过forEach(callbackFn: (value: T, index?: number, stack?: Stack) => void, thisArg?: Object)访问整个Stack的元素。 | |
通过Symbol.iterator:IterableIterator迭代器进行数据访问。 | |
通过locate(element: T)获取元素对应的位置。 | |
修改元素 | 通过forEach(callbackFn:(value: T, index?: number, stack?: Stack) => void, thisArg?: Object)对栈内元素进行修改操作。 |
删除元素 | 通过pop()对栈顶进行出栈操作并删除。 |
线性容器的使用
此处列举常用的线性容器ArrayList、Vector、Deque、Stack、List的使用示例,包括导入模块、增加元素、访问元素及修改等操作。示例代码如下所示:
// ArrayList
import ArrayList from '@ohos.util.ArrayList'; // 导入ArrayList模块
let arrayList = new ArrayList();
arrayList.add('a');
arrayList.add(1); // 增加元素
console.info(`result: ${arrayList[0]}`); // 访问元素
arrayList[0] = 'one'; // 修改元素
console.info(`result: ${arrayList[0]}`);
// Vector
import Vector from '@ohos.util.Vector'; // 导入Vector模块
let vector = new Vector();
vector.add('a');
let b1 = [1, 2, 3];
vector.add(b1);
vector.add(false); // 增加元素
console.info(`result: ${vector[0]}`); // 访问元素
console.info(`result: ${vector.getFirstElement()}`); // 访问元素
// Deque
import Deque from '@ohos.util.Deque'; // 导入Deque模块
let deque = new Deque;
deque.insertFront('a');
deque.insertFront(1); // 增加元素
console.info(`result: ${deque[0]}`); // 访问元素
deque[0] = 'one'; // 修改元素
console.info(`result: ${deque[0]}`);
// Stack
import Stack from '@ohos.util.Stack'; // 导入Stack模块
let stack = new Stack();
stack.push('a');
stack.push(1); // 增加元素
console.info(`result: ${stack[0]}`); // 访问元素
stack.pop(); // 删除栈顶元素并返回该删除元素
console.info(`result: ${stack.length}`);
// List
import List from '@ohos.util.List'; // 导入List模块
let list = new List;
list.add('a');
list.add(1);
let b2 = [1, 2, 3];
list.add(b2); // 增加元素
console.info(`result: ${list[0]}`); // 访问元素
console.info(`result: ${list.get(0)}`); // 访问元素
本文介绍了鸿蒙开发语言中ArkTS的容器类库,线性容器解析。更多有关鸿蒙进阶的技术,可以前往主页查看学习其他内容或者私信主页交流。下面是一张学习路线略缩图,完整在主页找我拿。
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!