bevfusion 学习笔记
目录
tensorrt ros部署:
https://github.com/linClubs/BEVFusion-ROS-TensorRT
也依赖ros2 c++
GitHub - newintelligence4/BEVfusion_preprocess: Multiple Lidar preprocessor for BEVfusion
ros2安装指导:
安装手册:?
Windows (binary) — ROS 2 Documentation: Humble documentation
下载地址:Releases · ros2/ros2 · GitHub
相机标定工具源码:
官方github,部分模型开源
https://github.com/ADLab-AutoDrive/BEVFusion
没有开源centerpoint版,
Main Results
nuScenes detection test
Model | Head | 3DBackbone | 2DBackbone | mAP | NDS | Link |
---|---|---|---|---|---|---|
BEVFusion | TransFusion-L | VoxelNet | Dual-Swin-T | 69.2 | 71.8 | Detection |
BEVFusion* | TransFusion-L | VoxelNet | Dual-Swin-T | 71.3 | 73.3 | Leadboard |
nuScenes detection validation
Model | Head | 3DBackbone | 2DBackbone | mAP | NDS | Model |
---|---|---|---|---|---|---|
BEVFusion | PointPillars | - | Dual-Swin-T | 22.9 | 31.1 | Model |
BEVFusion | PointPillars | PointPillars | - | 35.1 | 49.8 | Model |
BEVFusion | PointPillars | PointPillars | Dual-Swin-T | 53.5 | 60.4 | Model |
BEVFusion | CenterPoint | - | Dual-Swin-T | 27.1 | 32.1 | - |
BEVFusion | CenterPoint | VoxelNet | - | 57.1 | 65.4 | - |
BEVFusion | CenterPoint | VoxelNet | Dual-Swin-T | 64.2 | 68.0 | - |
BEVFusion | TransFusion-L | - | Dual-Swin-T | 22.7 | 26.1 | - |
BEVFusion | TransFusion-L | VoxelNet | - | 64.9 | 69.9 | - |
BEVFusion | TransFusion-L | VoxelNet | Dual-Swin-T | 67.9 | 71.0 | - |
BEVFusion* | TransFusion-L | VoxelNet | Dual-Swin-T | 69.6 | 72.1 | Model |
3D Object Detection (on nuScenes validation)
Model | Modality | mAP | NDS | Checkpoint |
---|---|---|---|---|
BEVFusion | C+L | 68.52 | 71.38 | Link |
Camera-Only Baseline | C | 35.56 | 41.21 | Link |
LiDAR-Only Baseline | L | 64.68 | 69.28 | Link |
Note: The camera-only object detection baseline is a variant of BEVDet-Tiny with a much heavier view transformer and other differences in hyperparameters. Thanks to our?efficient BEV pooling?operator, this model runs fast and has higher mAP than BEVDet-Tiny under the same input resolution. Please refer to?BEVDet repo?for the original BEVDet-Tiny implementation. The LiDAR-only baseline is TransFusion-L.
BEV Map Segmentation (on nuScenes validation)
Model | Modality | mIoU | Checkpoint |
---|---|---|---|
BEVFusion | C+L | 62.95 | Link |
Camera-Only Baseline | C | 57.09 | Link |
LiDAR-Only Baseline | L | 48.56 | Link |
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!