二分图

2024-01-08 04:57:27

目录

二分图

染色法判定二分图

匈牙利算法


二分图

  • 二分图,又叫二部图,将所有点分成两个集合,使得所有边只出现在集合之间的点之间,而集合内部的点之间没有边。
  • 二分图当且仅当图中没有奇数环。只要图中环的边数没奇数个数的,它就是二分图。
  • 二分图可以是连通的,也可以是不连通的
  • 树一定二分图。

染色法判定二分图

题目如下:

如果判断一个图是不是二分图?

  • 开始对任意一未染色的顶点染色。
  • 判断其相邻的顶点中,若未染色则将其染上和相邻顶点不同的颜色。
  • 若已经染色且颜色和相邻顶点的颜色相同则说明不是二分图,若颜色不同则继续判断。
  • bfs和dfs可以搞定!

解题代码:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 100010 * 2;
int e[N], ne[N], idx;//邻接表存储图
int h[N];
int color[N];//保存各个点的颜色,0 未染色,1 是红色,2 是黑色
int n, m;//点和边

void add(int a, int b)//邻接表插入点和边
{
    e[idx] = b, ne[idx]= h[a], h[a] = idx++;
}

bool dfs(int u, int c)//深度优先遍历,参数1:点的编号   参数2:要染的颜色
{
    color[u] = c;//u的点成 c 染色

    //遍历和 u 相邻的点
    for(int i = h[u]; i!= -1; i = ne[i])
    {
        int b = e[i];                 
        if(!color[b])//相邻的点没有颜色,则递归处理这个相邻点
        {
            if(!dfs(b, 3 - c)) return false;//(3 - 1 = 2, 如果 u 的颜色是2,则和 u 相邻的染成 1)
                                            //(3 - 2 = 1, 如果 u 的颜色是1,则和 u 相邻的染成 2)
        }
        else if(color[b] && color[b] != 3 - c)//如果已经染色,判断颜色是否为 3 - c
        {                                     
            return false;//如果不是,说明冲突,返回                   
        }
    }
    return true;
}

int main()
{
    memset(h, -1, sizeof h);//初始化邻接表
    cin >> n >> m;
    for(int i = 1; i <= m; i++)//读入边
    {
        int a, b;
        cin >> a >> b;
        add(a, b), add(b, a);
    }
    for(int i = 1; i <= n; i++)//遍历点
    {
        if(!color[i])//如果没染色
        {
        	//以没染色的点为起点进行dfs搜索
            if(!dfs(i, 1))//染色该点,并递归处理和它相邻的点
            {
                cout << "No" << endl;//出现矛盾,输出NO 
                return 0;
            }

        }
    }
    cout << "Yes" << endl;//全部染色完成,没有矛盾,输出YES
    return 0;
}

算法板子:O(m+n),n表示点数,m表示边数

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (color[j] == -1)
        {
            if (!dfs(j, !c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;
}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (color[i] == -1)
            if (!dfs(i, 0))
            {
                flag = false;
                break;
            }
    return flag;
}

匈牙利算法

题目如下:

解题代码

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 100010;

int n1, n2, m;
int h[N], e[M], ne[M], idx;
int match[N];
bool st[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

int main()
{
    scanf("%d%d%d", &n1, &n2, &m);

    memset(h, -1, sizeof h);

    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }

    int res = 0;
    for (int i = 1; i <= n1; i ++ )
    {
        memset(st, false, sizeof st);
        if (find(i)) res ++ ;
    }

    printf("%d\n", res);

    return 0;
}

算法板子:O(m*n),n表示点数,m表示边数

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
    memset(st, false, sizeof st);
    if (find(i)) res ++ ;
}

?

文章来源:https://blog.csdn.net/qq_61553520/article/details/135446896
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。