【预处理】大模型下开源文档解析工具总结及技术思考
1 基于文档解析工具的方法
pdf解析工具
导图一览:
-
PyPDF2提取txt:
import PyPDF2 def extract_text_from_pdf(pdf_path): with open(pdf_path, 'rb') as file: pdf_reader = PyPDF2.PdfFileReader(file) num_pages = pdf_reader.numPages text = "" for page_num in range(num_pages): page = pdf_reader.getPage(page_num) text += page.extractText() return text pdf_path = 'example.pdf' extracted_text = extract_text_from_pdf(pdf_path) print(extracted_text)
-
pdfplumber提取text:
import pdfplumber text = "" with pdfplumber.open('example.pdf') as pdf: for page in pdf.pages: text += page.extract_text() print(text)
-
pdfminer提取text:
pdfminer是一款非常强大的pdf文档解析工具,值得根据自身的场景重写其中的部分工具函数。pdfminer通过布局分析返回的PDF文档中的每个页面LTPage对象。这个对象和页内包含的子对象,形成一个树结构,如图所示:结构如图:
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfpage import PDFPage from io import StringIO # 打开PDF文件 with open('example.pdf', 'rb') as file: # 创建一个PDFResourceManager对象 resource_manager = PDFResourceManager() # 创建一个StringIO对象,用于存储提取的文本内容 output = StringIO() # 创建一个TextConverter对象 converter = TextConverter(resource_manager, output, laparams=LAParams()) # 创建一个PDFPageInterpreter对象 interpreter = PDFPageInterpreter(resource_manager, converter) # 逐页解析文档 for page in PDFPage.get_pages(file): interpreter.process_page(page) # 获取提取的文本内容 text = output.getvalue() print(text)
-
pymupdf提取text:
import fitz def MuPDF_extract_text_from_pdf(path): doc = fitz.open(path) all_content = [] page_nums = 0 for i in doc.pages(): page_nums += 1 all_content.append(i.get_text()) text = '\n'.join(all_content) # text = ''.join(text.split('\n')) return text
-
papermerge:EMNLP 2023 最佳 Demo
from papermage.recipes import CoreRecipe recipe = CoreRecipe() doc = recipe.run("example.pdf") for page in doc.pages: for row in page.rows: print(row.text)
doc、docx解析工具
-
Python-dox:优点:能够解析docx格式文档;缺点:doc格式文档无法直接解析,需要进行转换为docx格式间接解析
import docx def extract_text_from_word_document(file_path): document = docx.Document(file_path) text = '\n'.join([paragraph.text for paragraph in document.paragraphs]) return text file_path = 'example.docx' text = extract_text_from_word_document(file_path) print(text)
-
tika:Python Tika是一个基于Apache Tika的python库,可以解析各种格式的文档,如PDF、Microsoft Office、OpenOffice、XML、HTML、TXT等等。它提供了一种非常方便的方法来获取文档内容,包括元数据、正文、各种格式、图片、表格等等。(注意:需要依赖java环境)
from tika import parser parsed = parser.from_file('example.pdf') content = parsed['content'] print(content)
图片型文档解析工具
-
paddleocr:
from paddleocr import PaddleOCR ocr = PaddleOCR(use_angle_cls=True, lang="ch") img_path = 'example.jpg' result = ocr.ocr(img_path, cls=True) for idx in range(len(result)): res = result[idx] for line in res: print(line)
2 基于深度学习的文档解析方法
版面分析
- 基于开源项目的版面分析:ppstructure:项目地址:https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/ppstructure/docs/quickstart.md
import os
import cv2
from paddleocr import PPStructure,save_structure_res
table_engine = PPStructure(table=False, ocr=False, show_log=True)
save_folder = './output'
img_path = 'ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
-
基于自有场景的版面分析:常见的思路主要为,训练版面分析模型用于识别文档中各个信息区块,然后通过ocr工具解析特定区块中的文字信息。如果涉及复杂版面(如:双栏等),则需要根据启发式规则(根据bbox排序)进行信息区块的排序。常见的如:XY-CUT算法,xy_cut算法如:
import numpy as np def xy_cut(bboxes, direction="x"): result = [] K = len(bboxes) indexes = range(K) if len(bboxes) <= 0: return result if direction == "x": # x first sorted_ids = sorted(indexes, key=lambda k: (bboxes[k][0], bboxes[k][1])) sorted_boxes = sorted(bboxes, key=lambda x: (x[0], x[1])) next_dir = "y" else: sorted_ids = sorted(indexes, key=lambda k: (bboxes[k][1], bboxes[k][0])) sorted_boxes = sorted(bboxes, key=lambda x: (x[1], x[0])) next_dir = "x" curr = 0 np_bboxes = np.array(sorted_boxes) for idx in range(len(sorted_boxes)): if direction == "x": # a new seg path if idx != K - 1 and sorted_boxes[idx][2] < sorted_boxes[idx + 1][0]: rel_res = xy_cut(sorted_boxes[curr:idx + 1], next_dir) result += [sorted_ids[i + curr] for i in rel_res] curr = idx + 1 else: # a new seg path if idx != K - 1 and sorted_boxes[idx][3] < sorted_boxes[idx + 1][1]: rel_res = xy_cut(sorted_boxes[curr:idx + 1], next_dir) result += [sorted_ids[i + curr] for i in rel_res] curr = idx + 1 result += sorted_ids[curr:idx + 1] return result def augment_xy_cut(bboxes, direction="x", lambda_x=0.5, lambda_y=0.5, theta=5, aug=False): if aug is True: for idx in range(len(bboxes)): vx = np.random.normal(loc=0, scale=1) vy = np.random.normal(loc=0, scale=1) if np.abs(vx) >= lambda_x: bboxes[idx][0] += round(theta * vx) bboxes[idx][2] += round(theta * vx) if np.abs(vy) >= lambda_y: bboxes[idx][1] += round(theta * vy) bboxes[idx][3] += round(theta * vy) bboxes[idx] = [max(0, i) for i in bboxes[idx]] res_idx = xy_cut(bboxes, direction=direction) res_bboxes = [bboxes[idx] for idx in res_idx] return res_idx, res_bboxes bboxes = [[58.54924774169922, 1379.6373291015625, 1112.8863525390625, 1640.0870361328125], [60.1091423034668, 483.88677978515625, 1117.4927978515625, 586.197021484375], [57.687435150146484, 1098.1053466796875, 387.9796142578125, 1216.916015625], [63.158992767333984, 311.2080993652344, 1116.2508544921875, 365.2145080566406], [138.85513305664062, 144.44039916992188, 845.18017578125, 198.04937744140625], [996.1032104492188, 1053.6279296875, 1126.1046142578125, 1071.3463134765625], [58.743492126464844, 634.3077392578125, 898.405029296875, 700.9544677734375], [61.35755920410156, 750.6771240234375, 1051.1060791015625, 850.3980712890625], [426.77691650390625, 70.69780731201172, 556.0884399414062, 109.58145141601562], [997.040283203125, 903.5933227539062, 1129.2984619140625, 921.10595703125], [59.40523910522461, 1335.1563720703125, 329.7382507324219, 1357.46533203125], [568.9025268554688, 14.365530967712402, 1087.898193359375, 32.60292434692383], [998.1250610351562, 752.936279296875, 1128.435546875, 770.4116821289062], [59.6968879699707, 947.9129638671875, 601.4513549804688, 999.4548950195312], [58.91489028930664, 1049.8773193359375, 487.3372497558594, 1072.2935791015625], [60.49456024169922, 902.8802490234375, 600.7571411132812, 1000.3502197265625], [60.188941955566406, 247.99755859375, 155.72970581054688, 272.1385192871094], [996.873291015625, 637.3861694335938, 1128.3558349609375, 655.1572875976562], [59.74936294555664, 1272.98828125, 154.8768310546875, 1295.870361328125], [58.835716247558594, 1050.5926513671875, 481.59027099609375, 1071.966796875], [60.60163116455078, 750.1132202148438, 376.1781921386719, 771.8764038085938], [57.982513427734375, 419.16058349609375, 155.35882568359375, 444.25115966796875], [1017.0194091796875, 1336.21826171875, 1128.002197265625, 1355.67724609375], [1019.8740844726562, 486.90814208984375, 1127.482421875, 504.61767578125]] res_idx, res_bboxes = augment_xy_cut(bboxes, direction="y") print(res_idx) # res_idx, res_bboxes = augment_xy_cut(bboxes, direction="x") # print(res_idx) new_boxs = [] for i in res_idx: # print(i) new_boxs.append(bboxes[i]) print(new_boxs)
常见的单模态(目标检测)深度学习模型方法:Yolo系列、mask-RCNN、faster-CNN等
常见的多模态深度学习模型方法:layoutlmv3等,【文档智能】多模态预训练模型及相关数据集汇总
3 文本分割模型在文档解析中的角色
在经过以上的解析工具解析文本时,都会丢失文本原始的信息,包括:段落语义信息、字体、字号等文本特征信息。如何恢复原始的文本段落显得尤其重要,这关系到后续对文档的进一步的处理和分析。一般的,通过启发式规则根据坐标信息排列和聚合出段落,如:字坐标、行坐标等。但过程往往非常复杂且效果一般。因此,基于文本分割模型的版面分析算法显得尤为重要。最初的想法来源于序列标注模型,那么是否能应用序列标注的方法,来预测文本行之间的跳转概率?答案是肯定的,以pdf为例,具体实施步骤如下:
- 从pdf读取程序或ocr引擎中得到文本行及其坐标;
- 使用神经网络对第i行的文本进行编码,得到文本嵌入向量text_emb(i);
- 提取对应行的图像,得到图像嵌入向量img_emb(i);
- 提取字号、文字长度特征,并进行归一化得到特征向量;
- 聚合步骤2、3、4得到的向量,得到行嵌入line_emb(i);
- 使用神经网络对行向量序列[line_emb(i)]进行序列标注。
整体方案流程图如下:
4 单双栏区分
无论是文档parser还是版面分析的方法,解析后的信息区块都不是按照顺序进行返回的。因此需要重新组织“阅读顺序”。对于单栏文档,按照y坐标升降序就能完成顺序的组织,但是对于双栏文档,就需要进一步的分析处理。
在一些学术文档中,比较好办,一般找到文档的所有信息块的中心店坐标即可,用这一组横坐标的极差来判断即可,双栏论文的极差远远大于单栏论文,因此可以设定一个极差阈值。那么区别“阅读顺序”先找到中线,中线横坐标由求极差的横坐标 ( x 1 (x_{1} (x1?+ x 2 ) / 2 x_2)/2 x2?)/2得到,然后将左右栏的区块分开,按照纵坐标排序即可。
对于更复杂的布局文档解析,这一块是一个难点,有相关资料是寻找信息区块的视觉间隙,从而切开重排信息区块。
总结
本文介绍了一些常见的文档解析工具和实现方法以及文本分割模型在文档解析中的充当的角色,并提供了相关技术实现思路。当然,如果粗糙的进行文档处理也是可以的,常见的有,基于LangChain的文档处理方式,但其底层技术很多都是上述文档parser工具的集成。在面对复杂文档,解析时还是存在一定的困难,基于布局的多模态版面分析是值得研究的点。虽然目前百模支撑的上下文长度能cover一本书的长度,但真正落地实施起来效果一般。并且,一些目前一些常见的LLM应用,如:DocQA,通常将文本切片后进行向量化存入向量数据库,然后基于检索召回与query相关的片段输入到LLM中,LLM与向量数据库还是分离的形式,做出来的文档问答系统自然效果也就一般。因此,文档解析后,如何进行重新划分并得到完整的语义块值的进一步的探索。
参考文献
- PaperMage:https://github.com/allenai/papermage
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!