【计算机图形学】《五讲速通CG重点》第一讲-Pipeline and Introduction

2024-01-07 17:11:26

如果这篇文章对你有帮助,欢迎点赞与收藏~

目录

基础知识

Graphics Pipeline

Viewing process 视图处理过程

1 Zooming

2 View Volume

2.1 Orthographic view volume

2.2 Perspective view volume

3 Normalized Device coordinates (NDC)

4 Geometry vs Topology

Solid modeling

1 Surface based

1.1 Mesh Based 边界表示(Boundary Representation, B-rep)

?编辑

1.2 Constructive solid geometry(CSG) 构造实体几何

2 Volume based

2.1 Voxels: a volume element

3 Point based

3.1 Point cloud

GLSL

1 Vertex shader

2 Fragment shader

3 VAO VBO EBO


基础知识

Vertex(顶点)

define the location of primitives in space, and consists of vertex stream.

顶点用于定义空间中基本图形(primitives)的位置。它包含了一个顶点流(vertex stream),通常这个顶点流包含了多个顶点。每个顶点包括了定义其在三维空间中位置的坐标信息,以及可能包括颜色、纹理坐标和法线等其他属性。

Primitive

  1. the result of the interpretation of a vertex stream, as part of Primitive Assembly 作为图元装配(Primitive Assembly)的一部分,图元是顶点流解释的结果。简单地说,图元是由顶点通过特定的规则连接起来形成的基本图形,如点、线和三角形。

  2. the interpretation scheme used by opengl to determine what a stream of vertices represents when being rendered. 在OpenGL中,图元也指定了如何解释顶点流来渲染。OpenGL根据定义的图元类型(例如点、线段、三角形)来决定如何将一连串的顶点组合成图形。

Fragment

a fragment is a collection of values produced by the Rasterization. Each fragment represents a sample-sized segment of a rasterized primitive. 片元是光栅化(Rasterization)过程产生的值的集合。每个片元代表了光栅化图元的一个样本大小的部分。 片元包含了用于最终像素颜色计算的所有数据,比如颜色、深度以及其他可能的属性。在图形管线中,片元着色器(Fragment Shader)会处理这些片元,以生成最终在屏幕上显示的像素颜色。

Graphics Pipeline

There are three stages

? Application Stage

? Geometry Stage

? Rasterization Stage

Viewing process 视图处理过程

? Transform into camera coordinates.

? Perform projection into view volume.

? Clip geometry outside the view volume.

? Perform Perspective-division into NDC.

? Remove hidden surfaces

Local space -> world space -> camera space -> clipping space -> NDC -> viewport

1 Zooming

Adjusting the viewport can implement zooming 调整视口大小和位置可以实现缩放功能。缩放时,你实际上是改变了最终图像在屏幕上显示的尺寸。

Adjusting the clipping window can implement broadening or shrinking what we see 调整裁剪窗口(即在裁剪空间中决定哪些部分是可见的)可以实现对可见场景的扩大或缩小,从而改变用户看到的场景范围。

2 View Volume

术语“view volume”(视图体积)和“clipping volume”(裁剪体积)通常可以视为相同的概念,在某些情况下可以互换使用。

2.1 Orthographic view volume

? Preserves both distances and angles

? Shapes preserved

? Can be used for measurements

??? Building plans

??? Manuals

? Cannot see what object really looks like because many surfaces are hidden from view

? Often we add isometric

2.2 Perspective view volume

? Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminution) ? Looks realistic

? Equal distances along a line are not projected into equal distances (nonuniform foreshortening)

? Angles preserved only in planes parallel to the projection plane

? More difficult to construct by hand than parallel projections (but not more difficult by computer)

3 Normalized Device coordinates (NDC)

4 Geometry vs Topology

geometry: locations of the vertices

topology: organization of the vertices and edges

Topology holds even if geometry changes.

Solid modeling

Surfaced based & volume based

1 Surface based

1.1 Mesh Based 边界表示(Boundary Representation, B-rep)

The size and shape is defined by the faces, edges and vertices which consists of its boundary.

(low-dimensional elements)

? Pros: flexible and computers can render them quickly. The vast majority of 3D models today are built as textured polygonal models

? Cons: polygons are planar and need approximate curved surfaces using many polygons, representation is not unique

很难闭合

1.2 Constructive solid geometry(CSG) 构造实体几何

A solid is defined as the result of a sequence of regularized Boolean operations.

? Pros: Computer-Aided Manufacturing: a brick with a hole drilled through it is represented as “just

that” and CSG can easily assure that objects are “solid” or water-tight

? Cons: Relationships between objects might be very complex (search the entire tree) Real world objects may get very complex

2 Volume based

Spatial decomposition: voxel octree BSP 体素(voxels)、八叉树(octree)和二叉空间分割(Binary Space Partitioning, BSP)等技术

2.1 Voxels: a volume element

Pros:

? Modelling continues phenomena: medicine, geology, body, etc.

? Regular data

? Easy to compute volume, make slices

Cons:

? Massive data for high resolution

? The surface is always somehow “rough”

3 Point based

3.1 Point cloud

? Easily accessed with laser scanning, range camera or

stereo image matching

? No connectivity

? Widely used!

GLSL

1 Vertex shader

? Transform vertices

? Model, View and projection transformations

? Custom transformation

??? Morphing

??? Wave motion

? Lighting

? Color

? Normal

? Other per-vertex properties

顶点着色器可以执行多种任务,比如变换顶点的位置、处理顶点的颜色和纹理坐标、计算光照等。

通常,它会将顶点从一个坐标系统转换到另一个坐标系统,例如从模型坐标转换到视图坐标。

2 Fragment shader

? Compute the color of a fragment/pixel

? The input data is from rasterization and textures and other values

确定每个片元的最终颜色和其他属性。这个过程可能包括纹理映射、光照和阴影计算、颜色混合等。

3 VAO VBO EBO

  1. VAO(顶点数组对象,Vertex Array Object):

    1. VAO是一个对象,它存储了所有的顶点属性状态(如顶点属性的布局)和与这些属性相关的VBO

    2. 使用VAO的目的是为了保存顶点属性的配置和数据源。当配置顶点属性指针时,这些配置会存储在当前绑定的VAO中。

    3. 在渲染时,只需绑定相应的VAO,就可以使用其中的顶点属性配置和数据。

  2. VBO(顶点缓冲对象,Vertex Buffer Object):

    1. VBO用于在GPU内存中存储大量顶点的数据,如顶点坐标、纹理坐标、法线、颜色等。

    2. VBO的使用可以大幅减少CPU到GPU的通信,提高渲染效率,因为顶点数据可以在渲染之前发送到GPU,然后在渲染时直接从GPU内存中获取。

    3. 在使用VBO时,顶点数据只需上传一次到GPU,之后可以多次用于渲染,这对于动画和复杂场景渲染非常有效。

  3. EBO(元素缓冲对象,Element Buffer Object):

    1. EBO也称为索引缓冲对象(Index Buffer Object),用于存储顶点索引

    2. 使用EBO可以重用顶点数据,定义哪些顶点会组成一个图元(如三角形)。这样,相同的顶点可以被多次引用,减少了内存的使用和数据传输。

    3. EBO通常与VBO一起使用,VBO存储顶点数据,EBO存储构成图元的顶点索引。

如果这篇文章对你有帮助,欢迎点赞与收藏~

文章来源:https://blog.csdn.net/zhushatong/article/details/135414171
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。