linux ksm实现与代码简述

2023-12-13 06:35:03

KSM 全称是?Kernel Samepage Merging,表示相同的物理页只映射一份拷贝。

原理

在ksm初始化时(ksm_init),注册了一个ksm_scan_thread线程,这个线程的核心入口是ksm_do_scan。当对一个进程第一次通过madvice(MADV_MERGEABLE)标记一段内存可合并时,会触发__ksm_enter将当前进程标记为MMF_VM_MERGEABLE,并把进程的mm_struct放在ksm_mm_head链表上。ksm_scan_thread会在ksm_mm_head链表上做扫描,找到标记合并的匿名页中,page内容的checksum不变的页(说明最近没有写入),如果是将找到的mergable 页合并到stable_tree 的 node上,将相应pte置为同一个物理地址。当有写操作时,会因为write_protected标记触发cow机制,生成新的页,并从stable tree里移除。

实现

ksm_scan_thread线程的核心是 ksm_do_scan,它会扫描所有进程(ksm_mm_head链表上的所有进程)的可合并 vma,找到checksum不变的页,如果stable tree没有,就添加到page所在numa 节点的unstable tree上,如果原本unstable tree上有,就一起移至stable tree(即引用超过2页的mergable 页才会移至stable tree中)。一轮扫描结束后,unstable tree会被清空,并在下轮扫描中重建。

每个numa 节点都有一个 stable tree和unstable tree。如果开启了ksm_merge_across_nodes,则所有numa node共用0号节点。

stable tree 是一个红黑树,当共享页的vma很多,超过ksm_max_page_sharing(256)个时,会将stable tree 的node 转为chain list node,每个chain list node 上最多存256个vma节点。它们指向同一个物理页。

unstable tree也是一个红黑树,一轮扫描结束后,unstable tree会被清空,并在下轮扫描中重建。

代码简述

ksm_do_scan主要由scan_get_next_rmap_item找可合并匿名页,由cmp_and_merge_page到对应numa节点找页尝试合并

scan_get_next_rmap_item

找mergable 的mapping了物理页的page。最终会连成一个链存在mm_struct->rmap_list上。

会顺带将不再mapping或设置unmergable的rmap_item删掉。

scan_get_next_rmap_item():
  // 新一轮扫描
  if (mm_slot == &ksm_mm_head) {
    /**
     * 新一轮扫描前首先触发一次lru_add_drain_all
     * 因为lru如果一直不刷新的话,有些无用的页会因为引用计数而不能做merge。
     */
    lru_add_drain_all();

    /**
   * 如果一页做了迁移,在一轮结束时应该已经有对应节点加在了正确numa节点的stable tree上
     * 并增加了ref,可以安全地将ref减1了
     */
    if (ksm_merge_across_nodes) {
      list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
	    page = get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
	    if (page)
		  put_page(page);
	    cond_resched();
      }
    }
    
  }

  vma_iter_init(&vmi, mm, ksm_scan.address);
  for_each_vma(vmi, vma) {
    /**
     * 遍历一个进程所有mergeable anon vma中的有物理页的page,跳过device页,
   * 找到对应 address 的 rmap_item,或为它新创建一个rmap_item,
     * 上一次扫描到的ksm_scan.rmap_list 到它之间的所有item都
     * 不再mergable或没有物理页了,需要删除 rmap_item。
     * (这样一轮下来,整个进程的全部mergable的物理页的rmap,
     *   就全放在mm_struct->rmap_list上了)
     */
   rmap_item = get_next_rmap_item(mm_slot, ksm_scan.rmap_list, ksm_scan.address);
     return rmap_item; // 找到了一个mergable匿名页
  }
  // 如果扫描一轮发现这个进程没有ksm页了,就删掉对应mm_slot
  hash_del(&mm_slot->slot.hash);
  list_del(&mm_slot->slot.mm_node);
  

cmp_and_merge_page

如果目标页的ksm页大于等于2个,则能找目标页所在numa节点上的stable node,加入上去。

在还没找到时,会先把自己加在unstable tree对应numa节点上,等后面的ksm页发现自己,并与自己一同加到stable tree上。

如果一个numa节点的stable tree上的一个ksm页,有多个dup节点,它们会连成一个chain,在stable_tree_search->chain_prune时会优先找到映射最多page结构的dup节点,与它合并。

搜索可合并stable node过程中会顺带发现不属于当前numa 节点的ksm页,从树上删除,并在之后整一轮扫描结束时,将ref减1。

cmp_and_merge_page():
  stable_node = page_stable_node(page);
  if (stable_node) {
    如果不支持ksm迁移,且物理页做了 numa node 迁移。
    则把 stable node 迁移至migrate_nodes上。
    否则它已经在 stable 树上了,直接返回
  }

 // 找出一个 ksm 页
  kpage = stable_tree_search();

 // 如果有这样的 ksm 页,则将此页的pte映射到ksm页上去。并插入 stable tree。
  if (kpage) {
    try_to_merge_with_ksm_page();
    stable_tree_append(rmap_item, page_stable_node(kpage));
  }

  // 还没有这样的 ksm 页,计算 checksum ,看是不是与上次一样,一样则认为没有修改
  calc_checksum(page);

 // 如果checksum变了, 它可能被频繁修改,不对这样的页做合并
  if (rmap_item->oldchecksum != checksum) {
    rmap_item->oldchecksum = checksum;
	return;
  }

  // 如果checksum是0页,则与0页合并(0页是刚初始化的页)
  try_to_merge_one_page(vma, page, ZERO_PAGE(rmap_item->address));

  // 尝试从本轮的对应 numa 节点的 unstable tree 上找有没有出现过相同内容页,
 // 没有则插入 unstable tree
  unstable_tree_search_insert()

  // 如果unstable tree有,说明有两个同样内容的页内容一直没变,可以合并到 stable tree
  try_to_merge_two_pages()
  stable_tree_append(tree_rmap_item, stable_node);
  stable_tree_append(rmap_item, stable_node);
 
  // 如果两个相同内容页出现在同一个 compound page 上
  // 则只是拆分复合页,先不合并ksm,因为需要重新拿锁,可以等到下一轮
  split_huge_page(); 

stable_tree_search

搜索过程中,如果自己的page已经是migrate stable node了,就可以找个树上的节点替换,并返回自己。

在stable tree搜索过程中,会顺便发现物理页已经迁移了的node,并将其从树上移除。

stable_tree_search():
  // 如果页对应的stable node存在,则前面的cmp_and_merge_page
  // 保证了它在migrate_nodes上
  page_node = page_stable_node(page);

 // 在对应numa节点的红黑树查找
  nid = get_kpfn_nid(page_to_pfn(page));
  root = root_stable_tree + nid;
  new = &root->rb_node;
  while (*new) /* 一层层找到叶子节点 */{
    // 红黑树的节点可能是一个dup节点,如果vma超过了256,节点会组成dup链chain
   // 如果超过一定时间,则红黑树上chain节点的dup链,看是否只有一个dup节了。
   // 如果是,则用dup节点代替红黑树上的chain节点。
    // 这同时,会尝试把最多vma的dup节点放在chain的头上,作为下次合并首选dup
    chain_prune();
 
   // 比较页的内容,从而在红黑树上向下找
    ret = memcmp_pages(page, tree_page);
 
    // 如果目标页有stable node节点,且是一个物理页迁移了的 stable 节点
    if (page_node) {
       // 修改它的nid为它迁移到的numa节点id,并加回 stable tree 
       //(mapcount > 1 时,以dup形式加到node chain上,等于1时走if后的逻辑加到dup上)
       DO_NUMA(page_node->nid = nid);
       stable_node_chain_add_dup(page_node, stable_node)
    }

    // chain_prune已经取了最多map页的dup节点
    // 这里判断下如果numa id不变,说明没有迁移过,可直接返回
    tree_page = get_ksm_page(stable_node_dup);
    if (get_kpfn_nid(stable_node_dup->kpfn) == NUMA(stable_node_dup->nid)) {
      return tree_page;
    }
    /**
     * 如果numa id 变过,则刚好发现了一个 numa 节点迁移了的 node
     * 可顺便将其从树上删除。并尝试将原page的stable migrate node 加回树上
     * (调用它的 cmp_and_merge_page 保证了如果page有stable node对应,则一定是migrate node)
     */
    if (dup节点在红黑树上的chain上) {

      // 可直接将原节点删掉
      __stable_node_dup_del(stable_node_dup);
      if (page没有对应stable node migrate 节点))
        return null;

      // 如果page有节点,就把page改numa id后加到chain上去
      DO_NUMA(page_node->nid = nid);
      stable_node_chain_add_dup(page_node, stable_node);
      return page;

    } else /* dup 节点直接在红黑树上 */{
      if (page有对应stable node migrate 节点) {

        // 直接交换,并返回原页(因为它已经在树上了)
        rb_replace_node(&stable_node_dup->node, &page_node->node, root);
     return page;
      } else /* page 没有 stable node节点对应 */ {

        // 移除原节点,返回null(因为它没在树上了)
        rb_erase(&stable_node_dup->node, root);
        return null;
      }
    }
  }
   
    

页回收

当页被回收时,物理页的flag上swapcache标记会清理,导致get_ksm_page中观察到这个现象,并触发stable node 的删除,下次触发缺页时每个进程的页需要重新建立页的pte,再由ksmd线程重新扫描发现可合并的页。

文章来源:https://blog.csdn.net/qq_37517281/article/details/134933211
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。