VGG网络分析与demo实例

2023-12-25 12:49:47

参考自?

VGG 在2014年由牛津大学著名研究组?VGGVisual Geometry Group)提出,斩获该年 ImageNet 竞赛中 Localization Task(定位任务)第一名和 Classification Task(分类任务)第二名。

VGG 的创新点:

通过堆叠多个小卷积核来替代大尺度卷积核,可以减少训练参数,同时能保证相同的感受野。
论文中提到,可以通过堆叠两个3×3的卷积核替代5x5的卷积核,堆叠三个3×3的卷积核替代7x7的卷积核

1. CNN感受野

在卷积神经网络中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野(receptive field)。
通俗的解释是,输出feature map上的一个单元 对应 输入层上的区域大小。

以下图为例,输出层 layer3 中一个单元 对应 输入层 layer2 上区域大小为2×2(池化操作),对应输入层 layer1 上大小为5×5
(可以这么理解,layer2中 2×2区域中的每一块对应一个3×3的卷积核,又因为 stride=2,所以layer1的感受野为5×5)
?

现在,我们来验证下VGG论文中的两点结

VGG网络有多个版本,一般常用的是VGG-16模型,其网络结构如下如所示:

pytorch搭建VGG网络

import torch.nn as nn
import torch

class VGG(nn.Module):
    def __init__(self, features, num_classes=1000, init_weights=False):
        super(VGG, self).__init__()
        self.features = features			# 卷积层提取特征
        self.classifier = nn.Sequential(	# 全连接层进行分类
            nn.Dropout(p=0.5),
            nn.Linear(512*7*7, 2048),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(True),
            nn.Linear(2048, num_classes)
        )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.features(x)
        # N x 512 x 7 x 7
        x = torch.flatten(x, start_dim=1)
        # N x 512*7*7
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                # nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

这里有一点需要注意的是:

VGG网络有 VGG-13、VGG-16等多种网络结构

# vgg网络模型配置列表,数字表示卷积核个数,'M'表示最大池化层
cfgs = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],											# 模型A
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],									# 模型B
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],					# 模型D
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], 	# 模型E
}

# 卷积层提取特征
def make_features(cfg: list): # 传入的是具体某个模型的参数列表
    layers = []
    in_channels = 3		# 输入的原始图像(rgb三通道)
    for v in cfg:
        # 最大池化层
        if v == "M":
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        # 卷积层
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            layers += [conv2d, nn.ReLU(True)]
            in_channels = v
    return nn.Sequential(*layers)  # 单星号(*)将参数以元组(tuple)的形式导入


def vgg(model_name="vgg16", **kwargs):  # 双星号(**)将参数以字典的形式导入
    try:
        cfg = cfgs[model_name]
    except:
        print("Warning: model number {} not in cfgs dict!".format(model_name))
        exit(-1)
    model = VGG(make_features(cfg), **kwargs)
    return model

train.py

model_name = "vgg16"
net = vgg(model_name=model_name, num_classes=5, init_weights=True)

文章来源:https://blog.csdn.net/m0_60921016/article/details/135179073
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。