本地搭建部署Canal笔记-实现MySQL与ElasticSearch7数据同步
背景
本地搭建canal实现mysql数据到es的简单的数据同步,仅供学习参考
建议首先熟悉一下canal同步方式:https://github.com/alibaba/canal/wiki/%E7%AE%80%E4%BB%8B
前提条件
- 本地搭建MySQL数据库
- 本地搭建ElasticSearch
- 本地搭建canal-server
- 本地搭建canal-adapter
操作步骤
本地环境为window11,大部分组件采用docker进行部署,MySQL采用8.0.27,
搭建MySQL数据库
推荐使用docker-desktop,可视化操作,首先找到需要使用的版本直接pull到本地,通过界面进行容器启动,指定环境变量并定义挂载卷
也可本地使用docker命令部署MySQL,需要指定环境变量,root账户密码和挂载本地配置文件
#命令根据自己本地路径和配置进行更改
docker run
--env=MYSQL_ROOT_PASSWORD=123456
--volume=D:\docker\mysql\data:/var/lib/mysql/
--volume=D:\docker\mysql\conf:/etc/mysql/conf.d
--volume=/var/lib/mysql
-p 3306:3306
-p 33060:33060 --runtime=runc -d
--privileged=true
mysql:latest
命令说明:
-p 3306:3306
将宿主机的 3306 端口映射到 docker 容器的 3306 端口,格式为:主机(宿主)端口:容器端口--name mysql
运行服务的名字-v
挂载数据卷,格式为:宿主机目录或文件:容器内目录或文件-e MYSQL_ROOT_PASSWORD=123456
初始化root
用户的密码为123456
-d
后台程序运行容器--privileged=true
开启特殊权限
Docker 挂载主机目录时(添加容器数据卷),如果 Docker 访问出现cannot open directory:Permission denied
,在挂载目录的命令后多加一个 --privileged=true 参数即可。
因为出于安全原因,容器不允许访问任何设备,privileged
让 docker 应用容器获取宿主机root
权限(特殊权限),允许我们的 Docker 容器访问连接到主机的所有设备。容器获得所有能力,可以访问主机的所有设备,例如,CD-ROM、闪存驱动器、连接到主机的硬盘驱动器等。
下一步在MySQL配置文件中my.cnf设置开启binlog,更改配合文件之后重启MySQL
# Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
# The MySQL Server configuration file.
#
# For explanations see
# http://dev.mysql.com/doc/mysql/en/server-system-variables.html
[mysqld]
pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
datadir = /var/lib/mysql
secure-file-priv= NULL
--skip-host-cache
--skip-name-resolve
[mysqld]
log-bin=mysql-bin #添加这一行就ok
binlog-format=ROW #选择row模式
server_id=1 #配置mysql replaction需要定义,不能和canal的slaveId重复
# Custom config should go here
!includedir /etc/mysql/conf.d/
更改完配置文件之后验证binlog是否打开,并创建canal用户,设置权限
-- 查询binlog配置
show variables like 'binlog_format';
show variables like 'log_bin';
-- 创建canal账户
CREATE USER canal IDENTIFIED BY 'canal';
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';
FLUSH PRIVILEGES;
show grants for 'canal';
准备工作
- 新建数据库
CREATE SCHEMA `canal_manager` DEFAULT CHARACTER SET utf8mb4 ;
- 新增测试表
create table test_canal
(
id int auto_increment
primary key,
name text null
);
搭建ELK
本地搭建elk推荐使用docker-compose进行搭建,单独搭建的话需要进行各种配置比较麻烦,我本地搭建的版本为7.16.1,如果需要更改版本或者更改其他配置可以直接更改下面docker-compose.yaml文件
docker-compose.yaml
services:
elasticsearch:
image: elasticsearch:7.16.1
container_name: es
environment:
discovery.type: single-node
ES_JAVA_OPTS: "-Xms512m -Xmx512m"
ports:
- "9200:9200"
- "9300:9300"
healthcheck:
test: ["CMD-SHELL", "curl --silent --fail localhost:9200/_cluster/health || exit 1"]
interval: 10s
timeout: 10s
retries: 3
networks:
- elastic
logstash:
image: logstash:7.16.1
container_name: log
environment:
discovery.seed_hosts: logstash
LS_JAVA_OPTS: "-Xms512m -Xmx512m"
volumes:
- ./logstash/pipeline/logstash-nginx.config:/usr/share/logstash/pipeline/logstash-nginx.config
- ./logstash/nginx.log:/home/nginx.log
ports:
- "5000:5000/tcp"
- "5000:5000/udp"
- "5044:5044"
- "9600:9600"
depends_on:
- elasticsearch
networks:
- elastic
command: logstash -f /usr/share/logstash/pipeline/logstash-nginx.config
kibana:
image: kibana:7.16.1
container_name: kib
ports:
- "5601:5601"
depends_on:
- elasticsearch
networks:
- elastic
networks:
elastic:
driver: bridge
Deploy with docker compose
此处不再详细讲解docker-compse如何部署了
$ docker compose up -d
Creating network "elasticsearch-logstash-kibana_elastic" with driver "bridge"
Creating es ... done
Creating log ... done
Creating kib ... done
Expected result
Listing containers must show three containers running and the port mapping as below:
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
173f0634ed33 logstash:7.8.0 "/usr/local/bin/dock…" 43 seconds ago Up 41 seconds 0.0.0.0:5000->5000/tcp, 0.0.0.0:5044->5044/tcp, 0.0.0.0:9600->9600/tcp, 0.0.0.0:5000->5000/udp log
b448fd3e9b30 kibana:7.8.0 "/usr/local/bin/dumb…" 43 seconds ago Up 42 seconds 0.0.0.0:5601->5601/tcp kib
366d358fb03d elasticsearch:7.8.0 "/tini -- /usr/local…" 43 seconds ago Up 42 seconds (healthy) 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp
After the application starts, navigate to below links in your web browser:
- Elasticsearch:
http://localhost:9200
- Logstash:
http://localhost:9600
- Kibana:
http://localhost:5601/api/status
准备工作
- 进入kibana,新增测试索引
PUT /test_canal
{
"mappings":{
"properties":{
"id": {
"type": "long"
},
"name": {
"type": "text"
}
}
}
}
搭建canal-server
推荐使用官网下载release版本进行解压部署,官网地址:https://github.com/alibaba/canal/wiki/QuickStart,也可以使用docker进行部署,重点是部署完成后需要修改配置文件。
- 更改配置
vi conf/example/instance.properties
## mysql serverId
canal.instance.mysql.slaveId = 1234
#position info,需要改成自己的数据库信息
canal.instance.master.address = 127.0.0.1:3306
canal.instance.master.journal.name =
canal.instance.master.position =
canal.instance.master.timestamp =
#canal.instance.standby.address =
#canal.instance.standby.journal.name =
#canal.instance.standby.position =
#canal.instance.standby.timestamp =
#username/password,需要改成自己的数据库信息
canal.instance.dbUsername = canal
canal.instance.dbPassword = canal
canal.instance.defaultDatabaseName =
canal.instance.connectionCharset = UTF-8
#table regex
canal.instance.filter.regex = .\*\\\\..\*
具体配置文件介绍可以查看:https://github.com/alibaba/canal/wiki/AdminGuide
注意: 使用docker部署时,如果没有设置为同一个网络,数据库地址无法使用127.0.0.1
- 启动
sh bin/startup.sh
搭建canal-adapter
基本功能
canal 1.1.1版本之后, 增加客户端数据落地的适配及启动功能, 目前支持功能:
- 客户端启动器
- 同步管理REST接口
- 日志适配器, 作为DEMO
- 关系型数据库的数据同步(表对表同步), ETL功能
- HBase的数据同步(表对表同步), ETL功能
- (后续支持) ElasticSearch多表数据同步,ETL功能
适配器整体结构
client-adapter分为适配器和启动器两部分, 适配器为多个fat jar, 每个适配器会将自己所需的依赖打成一个包, 以SPI的方式让启动器动态加载, 目前所有支持的适配器都放置在plugin目录下
启动器为 SpringBoot 项目, 支持canal-client启动的同时提供相关REST管理接口, 运行目录结构为:
- bin
restart.sh
startup.bat
startup.sh
stop.sh
- lib
...
- plugin
client-adapter.logger-1.1.1-jar-with-dependencies.jar
client-adapter.hbase-1.1.1-jar-with-dependencies.jar
...
- conf
application.yml
- hbase
mytest_person2.yml
- logs
以上目录结构最终会打包成 canal-adapter-*.tar.gz 压缩包
适配器配置介绍
总配置文件 application.yml
adapter定义配置部分
canal.conf:
canalServerHost: 127.0.0.1:11111 # 对应单机模式下的canal server的ip:port
zookeeperHosts: slave1:2181 # 对应集群模式下的zk地址, 如果配置了canalServerHost, 则以canalServerHost为准
mqServers: slave1:6667 #or rocketmq # kafka或rocketMQ地址, 与canalServerHost不能并存
flatMessage: true # 扁平message开关, 是否以json字符串形式投递数据, 仅在kafka/rocketMQ模式下有效
batchSize: 50 # 每次获取数据的批大小, 单位为K
syncBatchSize: 1000 # 每次同步的批数量
retries: 0 # 重试次数, -1为无限重试
timeout: # 同步超时时间, 单位毫秒
mode: tcp # kafka rocketMQ # canal client的模式: tcp kafka rocketMQ
srcDataSources: # 源数据库
defaultDS: # 自定义名称
url: jdbc:mysql://127.0.0.1:3306/mytest?useUnicode=true # jdbc url
username: root # jdbc 账号
password: 121212 # jdbc 密码
canalAdapters: # 适配器列表
- instance: example # canal 实例名或者 MQ topic 名
groups: # 分组列表
- groupId: g1 # 分组id, 如果是MQ模式将用到该值
outerAdapters: # 分组内适配器列表
- name: logger # 日志打印适配器
......
说明:
- 一份数据可以被多个group同时消费, 多个group之间会是一个并行执行, 一个group内部是一个串行执行多个outerAdapters, 比如例子中logger和hbase
- 目前client adapter数据订阅的方式支持两种,直连canal server 或者 订阅kafka/RocketMQ的消息
操作流程
从官网下载relaes版本之后进行解压,解压之后修改cnf目录下得application.yml文件,根据自己得需求选择下面不同的adapters进行配置,我本地安装的es是es7.16,选择es7的配置,具体配置的含义请参考上方适配器配置介绍
- 配置application.yaml
server:
port: 8081
spring:
jackson:
date-format: yyyy-MM-dd HH:mm:ss
time-zone: GMT+8
default-property-inclusion: non_null
canal.conf:
mode: tcp #tcp kafka rocketMQ rabbitMQ
flatMessage: true
zookeeperHosts:
syncBatchSize: 1000
retries: -1
timeout:
accessKey:
secretKey:
consumerProperties:
# canal tcp consumer
canal.tcp.server.host: 127.0.0.1:11111
canal.tcp.zookeeper.hosts:
canal.tcp.batch.size: 500
canal.tcp.username:
canal.tcp.password:
# kafka consumer
kafka.bootstrap.servers: 127.0.0.1:9092
kafka.enable.auto.commit: false
kafka.auto.commit.interval.ms: 1000
kafka.auto.offset.reset: latest
kafka.request.timeout.ms: 40000
kafka.session.timeout.ms: 30000
kafka.isolation.level: read_committed
kafka.max.poll.records: 1000
# rocketMQ consumer
rocketmq.namespace:
rocketmq.namesrv.addr: 127.0.0.1:9876
rocketmq.batch.size: 1000
rocketmq.enable.message.trace: false
rocketmq.customized.trace.topic:
rocketmq.access.channel:
rocketmq.subscribe.filter:
# rabbitMQ consumer
rabbitmq.host:
rabbitmq.virtual.host:
rabbitmq.username:
rabbitmq.password:
rabbitmq.resource.ownerId:
srcDataSources:
defaultDS:
url: jdbc:mysql://127.0.0.1:3306/test?useUnicode=true # 配置数据库地址
username: root
password: 123456
canalAdapters:
- instance: example # canal instance Name or mq topic name
groups:
- groupId: g1
outerAdapters:
- name: logger
# - name: rdb
# key: mysql1
# properties:
# jdbc.driverClassName: com.mysql.jdbc.Driver
# jdbc.url: jdbc:mysql://127.0.0.1:3306/mytest2?useUnicode=true
# jdbc.username: root
# jdbc.password: 121212
# druid.stat.enable: false
# druid.stat.slowSqlMillis: 1000
# - name: rdb
# key: oracle1
# properties:
# jdbc.driverClassName: oracle.jdbc.OracleDriver
# jdbc.url: jdbc:oracle:thin:@localhost:49161:XE
# jdbc.username: mytest
# jdbc.password: m121212
# - name: rdb
# key: postgres1
# properties:
# jdbc.driverClassName: org.postgresql.Driver
# jdbc.url: jdbc:postgresql://localhost:5432/postgres
# jdbc.username: postgres
# jdbc.password: 121212
# threads: 1
# commitSize: 3000
# - name: hbase
# properties:
# hbase.zookeeper.quorum: 127.0.0.1
# hbase.zookeeper.property.clientPort: 2181
# zookeeper.znode.parent: /hbase
- name: es7
hosts: 172.22.80.1:9300 # 127.0.0.1:9200 for rest mode
properties:
mode: transport # or rest
# security.auth: test:123456 # only used for rest mode
cluster.name: docker-cluster
# - name: kudu
# key: kudu
# properties:
# kudu.master.address: 127.0.0.1 # ',' split multi address
# - name: phoenix
# key: phoenix
# properties:
# jdbc.driverClassName: org.apache.phoenix.jdbc.PhoenixDriver
# jdbc.url: jdbc:phoenix:127.0.0.1:2181:/hbase/db
# jdbc.username:
# jdbc.password:
-
新增测试yml文件,再es7目录下新建testcanal.yml配置,更加复杂的映射处理可以参考canal官网示例:
https://github.com/alibaba/canal/wiki/Sync-ES
- 启动canal-adapter启动器
bin/startup.sh
windows启动.bat文件
- 验证
新增mysql mytest.test_canal表的数据, 将会自动同步到es的test_canal索引下面, 并会打出DML的log
番外:adapter管理REST接口
注意:部分操作需要指定cnf下的yml配置
查询所有订阅同步的canal instance或MQ topic
curl http://127.0.0.1:8081/destinations
数据同步开关
curl http://127.0.0.1:8081/syncSwitch/example/off -X PUT
针对 example 这个canal instance/MQ topic 进行开关操作. off代表关闭, instance/topic下的同步将阻塞或者断开连接不再接收数据, on代表开启
注: 如果在配置文件中配置了 zookeeperHosts 项, 则会使用分布式锁来控制HA中的数据同步开关, 如果是单机模式则使用本地锁来控制开关
数据同步开关状态
curl http://127.0.0.1:8081/syncSwitch/example
查看指定 canal instance/MQ topic 的数据同步开关状态
手动ETL
- 不带参数
curl http://127.0.0.1:8081/etl/es7/testcanal.yml -X POST
- 带参数
curl http://127.0.0.1:8081/etl/hbase/mytest_person2.yml -X POST -d "params=2018-10-21 00:00:00"
导入数据到指定类型的库, 如果params参数为空则全表导入, 参数对应的查询条件在配置中的etlCondition指定
查看相关库总数据
curl http://127.0.0.1:8081/count/hbase/mytest_person2.yml
常见问题
not part of the cluster Cluster [elasticsearch], ignoring…
查看canal-adapter配置中的application.yml配置是否和es中的cluster_name配置相同
连接问题
如果本地使用docker进行部署,未指定网桥,切记不能使用127.0.0.1进行es连接或者mysql数据库连接
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!