FastApi-快速入门 加入逻辑 二张图片的比对 2
2024-01-08 20:24:53
加入图片相似度功能
getpic进行网络图片保存在本地
# -*- coding: utf-8 -*-
import os
import uuid
from PIL import Image
import requests
from io import BytesIO
# 对图片进行统一化处理
def get_thum(image, size=(64, 64), greyscale=False):
if image is None:
raise ValueError("Cannot process None image")
image = image.resize(size, Image.ANTIALIAS)
if greyscale:
image = image.convert('L')
return image
def getpic(image_url):
random_filename = str(uuid.uuid4()) + '.jpg'
try:
response = requests.get(image_url)
if response.status_code == 200:
image_content = response.content
image_stream = BytesIO(image_content)
image = Image.open(image_stream)
save_path = random_filename
image.save(save_path)
print(f'图片已保存到:{os.path.abspath(save_path)}')
# 这里应该返回 Image 对象,而不是文件路径
# 但是由于我们稍后要关闭文件,所以返回文件路径,并在需要时重新打开
return save_path
else:
print('无法获取图片,服务器响应码:', response.status_code)
except requests.exceptions.InvalidURL as e:
print(f"Invalid URL: {e}")
except requests.exceptions.RequestException as e:
print(f"An error occurred while making the request: {e}")
# 计算图片的余弦距离(实际上计算的是余弦相似度)
def similarity_pics(image_path1, image_path2):
# 打开图像文件并获取 Image 对象
image1 = Image.open(image_path1).convert('L')
image2 = Image.open(image_path2).convert('L')
# 确保图像是相同的大小和模式(例如,都是 RGB 或都是 L(灰度))
# 这里我们假设图像已经是相同的大小,因为它们都经过了 get_thum 的处理
# 将图像转换为向量
# 注意:这里的实现方式可能需要更改,因为直接将像素值平均可能不是最佳方式
# 通常,您可能会将图像转换为特征向量,使用例如 SIFT、SURF 或其他图像特征提取方法
vectors = [list(map(int, image1.getdata())), list(map(int, image2.getdata()))]
# 计算向量的余弦相似度
a, b = vectors
a_norm = sum([x ** 2 for x in a]) ** 0.5
b_norm = sum([x ** 2 for x in b]) ** 0.5
dot_product = sum(a_i * b_i for a_i, b_i in zip(a, b))
similarity = dot_product / (a_norm * b_norm)
return similarity
接口代码:
import os
import uvicorn
from fastapi import FastAPI, Form
from twopics import similarity_pics, getpic
app = FastAPI()
@app.get("/")
async def index():
"""
注册一个根路径
:return:
"""
return {"message": "自定义请求"}
@app.post("/")
async def login(pic1: str = Form(...), pic2: str = Form(...)):
image1 = getpic(pic1)
image2 = getpic(pic2)
re = similarity_pics(image1, image2)
os.remove(image1)
os.remove(image2)
return {"re": re,"brief":'图片相似度'}
@app.get("/about")
async def about():
"""
项目信息
:return:
"""
return {
"app_name": "人工智能识别",
"app_version": "v0.0.1"
}
if __name__ == "__main__":
uvicorn.run(app, host="127.0.0.1", port=8222)
调试
文章来源:https://blog.csdn.net/hzether/article/details/135408439
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!