使用numpy处理图片——镜像翻转和旋转
2024-01-10 06:16:10
在《使用numpy处理图片——基础操作》一文中,我们介绍了如何使用numpy修改图片的透明度。本文我们将介绍镜像翻转和旋转。
镜像翻转
上下翻转
from PIL import Image
import numpy as np
img = Image.open('example.png')
data = np.array(img)
# axis=0 is vertical, axis=1 is horizontal
verticalData = np.flip(data, axis=0)
verticalImg = Image.fromarray(verticalData)
verticalImg.save('vertical.png')
左右翻转
from PIL import Image
import numpy as np
img = Image.open('example.png')
data = np.array(img)
# axis=0 is vertical, axis=1 is horizontal
horizontalData = np.flip(data, axis=1)
horizontalImg = Image.fromarray(horizontalData)
horizontalImg.save('horizontal.png')
旋转
上面的翻转,又可以称之为镜像翻转。因为得到的图片,只有通过镜子去查看,才是正常的字。
而一般情况下,我们需要的是旋转,即得到的文字还是可以正确识别的。
向左旋转90度
向左旋转90需要通过两个步骤完成:
- 转置
- 上下镜像翻转
def flip_left_90(arr):
return np.flip(arr.transpose((1,0,2)), axis=0)
需要解释下transpose传递元组的意思
If specified, it must be a tuple or list which contains a permutation of [0,1,…,N-1] where N is the number of axes of a. The i’th axis of the returned array will correspond to the axis numbered axes[i] of the input. If not specified, defaults to range(a.ndim)[::-1], which reverses the order of the axes.
这句话的意思是,传递的元组要包含该数组所有的维度的值。转换的方法就是对应项相互转置。比如数组最开始时的维度表示是(0,1,2),如果给transpose传递了(1,0,2)。就意味着0维度和1维度转置,2维度保持不变。这个对我们处理图片特别重要,因为2维度保存的是RGBA信息。这个信息不能转置,否则就会导致颜色错乱。
旋转180度
旋转180度有两种方法:
- 两次90度左转。
- 上下镜像翻转后左右镜像翻转。(顺序无所谓)
def flip_180_with_flip_left_90(arr):
return flip_left_90(flip_left_90(arr))
def flip_180_with_axis(arr):
return np.flip(np.flip(arr, axis=1), axis=0)
向右旋转90度
向右旋转90度,也是向左旋转270度。可以拆解为:
- 3次向左旋转
- 1次180度旋转外加1次90度向左旋转
- 1次90度向左旋转外加1次180度旋转
def flip_right_90_with_left_90(arr):
return flip_left_90(flip_left_90(flip_left_90(arr)))
def flip_right_90_with_axis_left_90(arr):
return flip_left_90(flip_180_with_axis(arr))
def flip_right_90_with_left_90_axis(arr):
return flip_180_with_axis(flip_left_90(arr))
代码
from PIL import Image
import numpy as np
img = Image.open('example.png')
data = np.array(img)
# axis=0 is vertical, axis=1 is horizontal
verticalData = np.flip(data, axis=0)
verticalImg = Image.fromarray(verticalData)
verticalImg.save('vertical.png')
horizontalData = np.flip(data, axis=1)
horizontalImg = Image.fromarray(horizontalData)
horizontalImg.save('horizontal.png')
def flip_180_with_flip_left_90(arr):
return flip_left_90(flip_left_90(arr))
def flip_180_with_axis(arr):
return np.flip(np.flip(arr, axis=1), axis=0)
def flip_left_90(arr):
return np.flip(arr.transpose((1,0,2)), axis=0)
def flip_right_90_with_left_90(arr):
return flip_left_90(flip_left_90(flip_left_90(arr)))
def flip_right_90_with_axis_left_90(arr):
return flip_left_90(flip_180_with_axis(arr))
def flip_right_90_with_left_90_axis(arr):
return flip_180_with_axis(flip_left_90(arr))
left90Data = flip_left_90(data)
left90Img = Image.fromarray(left90Data)
left90Img.save('flipleft90.png')
right90DataFromLeft90 = flip_right_90_with_left_90(data)
right90ImgFromLeft90 = Image.fromarray(right90DataFromLeft90)
right90ImgFromLeft90.save('flipright90fromleft90.png')
right90DataFromAxisLeft90 = flip_right_90_with_axis_left_90(data)
right90ImgFromAxisLeft90 = Image.fromarray(right90DataFromAxisLeft90)
right90ImgFromAxisLeft90.save('flipright90fromamxisleft90.png')
right90DataFromLeft90Axis = flip_right_90_with_left_90_axis(data)
right90ImgFromLeft90Axis = Image.fromarray(right90DataFromLeft90Axis)
right90ImgFromLeft90Axis.save('flipright90fromleft90amxis.png')
left180DataFromLeft90 = flip_180_with_flip_left_90(data)
left180ImgFromLeft90 = Image.fromarray(left180DataFromLeft90)
left180ImgFromLeft90.save('flip180fromleft90.png')
left180DataFromAxis = flip_180_with_axis(data)
left180ImgFromAxis = Image.fromarray(left180DataFromAxis)
left180ImgFromAxis.save('flip180fromaxis.png')
参考资料
文章来源:https://blog.csdn.net/breaksoftware/article/details/135487319
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!