YOLOv8重要文件解读
2023-12-15 18:40:35
🍨 本文为[🔗365天深度学习训练营学习记录博客
🍦 参考文章:365天深度学习训练营
🍖 原作者:[K同学啊 | 接辅导、项目定制]
🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)?
D:\ultralytics-main\ultralytics-main\ultralytics\nn\models\** 目录下的文件与YOLOv5commonpy中文件起到的作用相同,对应模型中的相应模块?。
conv.py文件?
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
函数的参数包括:
k
:卷积核的大小,可以是整数或整数列表。p
:填充大小,可以是整数或整数列表,如果未提供,则自动计算。d
:膨胀率(dilation rate),默认为1。
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class Conv2(Conv):
"""Simplified RepConv module with Conv fusing."""
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x) + self.cv2(x)))
def forward_fuse(self, x):
"""Apply fused convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def fuse_convs(self):
"""Fuse parallel convolutions."""
w = torch.zeros_like(self.conv.weight.data)
i = [x // 2 for x in w.shape[2:]]
w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone()
self.conv.weight.data += w
self.__delattr__('cv2')
self.forward = self.forward_fuse
__init__
方法用于初始化卷积层,参数包括输入通道数 c1
,输出通道数 c2
,卷积核大小 k
,步幅 s
,填充大小 p
,分组数 g
,膨胀率 d
,以及是否使用激活函数 act
。
class LightConv(nn.Module):
"""
Light convolution with args(ch_in, ch_out, kernel).
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, c2, k=1, act=nn.ReLU()):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv1 = Conv(c1, c2, 1, act=False)
self.conv2 = DWConv(c2, c2, k, act=act)
def forward(self, x):
"""Apply 2 convolutions to input tensor."""
return self.conv2(self.conv1(x))
class DWConv(Conv):
"""Depth-wise convolution."""
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
"""Initialize Depth-wise convolution with given parameters."""
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
LightConv类:
LightConv
类表示轻量级卷积,包含两个卷积层的堆叠。
DWConv类:
DWConv
类表示深度可分离卷积。- 在初始化过程中,调用了父类
Conv
的__init__
方法,其中g
参数被设置为输入通道数和输出通道数的最大公约数,从而实现深度可分离卷积。
class DWConvTranspose2d(nn.ConvTranspose2d):
"""Depth-wise transpose convolution."""
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
"""Initialize DWConvTranspose2d class with given parameters."""
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
class ConvTranspose(nn.Module):
"""Convolution transpose 2d layer."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
"""Initialize ConvTranspose2d layer with batch normalization and activation function."""
super().__init__()
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Applies transposed convolutions, batch normalization and activation to input."""
return self.act(self.bn(self.conv_transpose(x)))
def forward_fuse(self, x):
"""Applies activation and convolution transpose operation to input."""
return self.act(self.conv_transpose(x))
-
DWConvTranspose2d类:
DWConvTranspose2d
类表示深度可分离的转置卷积。- 在初始化过程中,调用了父类
nn.ConvTranspose2d
的__init__
方法,并设置了groups
参数为输入通道数和输出通道数的最大公约数。
-
ConvTranspose类:
ConvTranspose
类表示转置卷积 2D 层,与普通转置卷积相比,它包含了可选的批归一化和激活函数。__init__
方法用于初始化转置卷积,参数包括输入通道数c1
,输出通道数c2
,卷积核大小k
,步幅s
,填充参数p
,以及是否使用批归一化bn
和激活函数act
。- 在初始化过程中,创建了转置卷积层
conv_transpose
,以及可选的批归一化层bn
和激活函数act
。
class Focus(nn.Module):
"""Focus wh information into c-space."""
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
"""Initializes Focus object with user defined channel, convolution, padding, group and activation values."""
super().__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
# self.contract = Contract(gain=2)
def forward(self, x):
"""
Applies convolution to concatenated tensor and returns the output.
Input shape is (b,c,w,h) and output shape is (b,4c,w/2,h/2).
"""
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
# return self.conv(self.contract(x))
-
Focus类(用于在通道维度上聚焦宽高信息):
Focus
类继承自nn.Module
,表示将宽高信息集中到通道空间的操作。- 在初始化过程中,创建了一个包含四个输入通道的卷积层
self.conv
。卷积层将四个通道的信息进行卷积操作,然后输出到通道维度上,用于集中宽高信息。
-
forward
方法:forward
方法实现了前向传播操作。- 输入张量的形状为 (b, c, w, h),其中
b
是批量大小,c
是通道数,w
和h
是宽和高。 - 通过
torch.cat
将输入张量沿着宽和高方向进行四次拼接,得到一个新的张量,形状为 (b, 4c, w/2, h/2)。
class GhostConv(nn.Module):
"""Ghost Convolution https://github.com/huawei-noah/ghostnet."""
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
"""Initializes the GhostConv object with input channels, output channels, kernel size, stride, groups and
activation.
"""
super().__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
def forward(self, x):
"""Forward propagation through a Ghost Bottleneck layer with skip connection."""
y = self.cv1(x)
return torch.cat((y, self.cv2(y)), 1)
Ghost Convolution 是通过两个卷积层组合的轻量级卷积操作,其主要功能是在保持模型轻量化的同时,增加网络的感受野和表征能力。
两个卷积层组合的轻量级卷积操作:
- 首先在初始化两个卷积层?self.cv1 = Conv(c1, c_, k, s, None, g, act=act) self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
在forward
方法中实现两个卷积层组合:y = self.cv1(x)?将输入张量x
传递给第一个卷积层self.cv1
进行卷积,得到输出张量y
。?return torch.cat((y, self.cv2(y)), 1)?将输出张量y
和self.cv2(y)
进行通道维度上的拼接,得到最终的输出。
文章来源:https://blog.csdn.net/qq_60245590/article/details/135022013
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!