C# OpenCvSharp DNN 部署YOLOV6目标检测

2023-12-14 22:30:44

目录

效果

模型信息

项目

代码

下载


C# OpenCvSharp DNN 部署YOLOV6目标检测

效果

模型信息

Inputs
-------------------------
name:image_arrays
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:outputs
tensor:Float[1, 8400, 85]
---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
? ? public partial class frmMain : Form
? ? {
? ? ? ? public frmMain()
? ? ? ? {
? ? ? ? ? ? InitializeComponent();
? ? ? ? }

? ? ? ? string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
? ? ? ? string image_path = "";

? ? ? ? DateTime dt1 = DateTime.Now;
? ? ? ? DateTime dt2 = DateTime.Now;

? ? ? ? float confThreshold;
? ? ? ? float nmsThreshold;
? ? ? ? string modelpath;

? ? ? ? int inpHeight;
? ? ? ? int inpWidth;

? ? ? ? List<string> class_names;
? ? ? ? int num_class;

? ? ? ? Net opencv_net;
? ? ? ? Mat BN_image;

? ? ? ? Mat image;
? ? ? ? Mat result_image;

? ? ? ? private void button1_Click(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? OpenFileDialog ofd = new OpenFileDialog();
? ? ? ? ? ? ofd.Filter = fileFilter;
? ? ? ? ? ? if (ofd.ShowDialog() != DialogResult.OK) return;

? ? ? ? ? ? pictureBox1.Image = null;
? ? ? ? ? ? pictureBox2.Image = null;
? ? ? ? ? ? textBox1.Text = "";

? ? ? ? ? ? image_path = ofd.FileName;
? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);
? ? ? ? ? ? image = new Mat(image_path);
? ? ? ? }

? ? ? ? private void Form1_Load(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? confThreshold = 0.3f;
? ? ? ? ? ? nmsThreshold = 0.5f;
? ? ? ? ? ? modelpath = "model/yolov6s.onnx";

? ? ? ? ? ? inpHeight = 640;
? ? ? ? ? ? inpWidth = 640;

? ? ? ? ? ? opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

? ? ? ? ? ? class_names = new List<string>();
? ? ? ? ? ? StreamReader sr = new StreamReader("model/coco.names");
? ? ? ? ? ? string line;
? ? ? ? ? ? while ((line = sr.ReadLine()) != null)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? class_names.Add(line);
? ? ? ? ? ? }
? ? ? ? ? ? num_class = class_names.Count();

? ? ? ? ? ? image_path = "test_img/image3.jpg";
? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);

? ? ? ? }

? ? ? ? float sigmoid(float x)
? ? ? ? {
? ? ? ? ? ? return (float)(1.0 / (1 + Math.Exp(-x)));
? ? ? ? }

? ? ? ? Mat ResizeImage(Mat srcimg, out int newh, out int neww, out int top, out int left)
? ? ? ? {
? ? ? ? ? ? int srch = srcimg.Rows, srcw = srcimg.Cols;
? ? ? ? ? ? top = 0;
? ? ? ? ? ? left = 0;
? ? ? ? ? ? newh = inpHeight;
? ? ? ? ? ? neww = inpWidth;
? ? ? ? ? ? Mat dstimg = new Mat();
? ? ? ? ? ? if (srch != srcw)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? float hw_scale = (float)srch / srcw;
? ? ? ? ? ? ? ? if (hw_scale > 1)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? newh = inpHeight;
? ? ? ? ? ? ? ? ? ? neww = (int)(inpWidth / hw_scale);
? ? ? ? ? ? ? ? ? ? Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh), 0, 0, InterpolationFlags.Area);
? ? ? ? ? ? ? ? ? ? left = (int)((inpWidth - neww) * 0.5);
? ? ? ? ? ? ? ? ? ? Cv2.CopyMakeBorder(dstimg, dstimg, 0, 0, left, inpWidth - neww - left, BorderTypes.Constant);
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? else
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? newh = (int)(inpHeight * hw_scale);
? ? ? ? ? ? ? ? ? ? neww = inpWidth;
? ? ? ? ? ? ? ? ? ? Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh), 0, 0, InterpolationFlags.Area);
? ? ? ? ? ? ? ? ? ? top = (int)((inpHeight - newh) * 0.5);
? ? ? ? ? ? ? ? ? ? Cv2.CopyMakeBorder(dstimg, dstimg, top, inpHeight - newh - top, 0, 0, BorderTypes.Constant);
? ? ? ? ? ? ? ? }
? ? ? ? ? ? }
? ? ? ? ? ? else
? ? ? ? ? ? {
? ? ? ? ? ? ? ? Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh));
? ? ? ? ? ? }
? ? ? ? ? ? return dstimg;
? ? ? ? }

? ? ? ? private unsafe void button2_Click(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? if (image_path == "")
? ? ? ? ? ? {
? ? ? ? ? ? ? ? return;
? ? ? ? ? ? }
? ? ? ? ? ? textBox1.Text = "检测中,请稍等……";
? ? ? ? ? ? pictureBox2.Image = null;
? ? ? ? ? ? Application.DoEvents();

? ? ? ? ? ? image = new Mat(image_path);

? ? ? ? ? ? int newh = 0, neww = 0, padh = 0, padw = 0;
? ? ? ? ? ? Mat dstimg = ResizeImage(image, out newh, out neww, out padh, out padw);

? ? ? ? ? ? BN_image = CvDnn.BlobFromImage(dstimg, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);

? ? ? ? ? ? //配置图片输入数据
? ? ? ? ? ? opencv_net.SetInput(BN_image);

? ? ? ? ? ? //模型推理,读取推理结果
? ? ? ? ? ? Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };
? ? ? ? ? ? string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

? ? ? ? ? ? dt1 = DateTime.Now;

? ? ? ? ? ? opencv_net.Forward(outs, outBlobNames);

? ? ? ? ? ? dt2 = DateTime.Now;

? ? ? ? ? ? int num_proposal = outs[0].Size(0);
? ? ? ? ? ? int nout = outs[0].Size(1);

? ? ? ? ? ? if (outs[0].Dims > 2)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? num_proposal = outs[0].Size(1);
? ? ? ? ? ? ? ? nout = outs[0].Size(2);
? ? ? ? ? ? ? ? outs[0] = outs[0].Reshape(0, num_proposal);
? ? ? ? ? ? }

? ? ? ? ? ? float ratioh = 1.0f * image.Rows / newh, ratiow = 1.0f * image.Cols / neww;
? ? ? ? ? ? int n = 0, row_ind = 0; ///cx,cy,w,h,box_score,class_score
? ? ? ? ? ? float* pdata = (float*)outs[0].Data;

? ? ? ? ? ? List<Rect> boxes = new List<Rect>();
? ? ? ? ? ? List<float> confidences = new List<float>();
? ? ? ? ? ? List<int> classIds = new List<int>();

? ? ? ? ? ? for (n = 0; n < num_proposal; n++)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? float box_score = pdata[4];

? ? ? ? ? ? ? ? if (box_score > confThreshold)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? Mat scores = outs[0].Row(row_ind).ColRange(5, nout);
? ? ? ? ? ? ? ? ? ? double minVal, max_class_socre;
? ? ? ? ? ? ? ? ? ? OpenCvSharp.Point minLoc, classIdPoint;
? ? ? ? ? ? ? ? ? ? // Get the value and location of the maximum score
? ? ? ? ? ? ? ? ? ? Cv2.MinMaxLoc(scores, out minVal, out max_class_socre, out minLoc, out classIdPoint);
? ? ? ? ? ? ? ? ? ? max_class_socre *= box_score;

? ? ? ? ? ? ? ? ? ? int class_idx = classIdPoint.X;

? ? ? ? ? ? ? ? ? ? float cx = (pdata[0] - padw) * ratiow; ?//cx
? ? ? ? ? ? ? ? ? ? float cy = (pdata[1] - padh) * ratioh; ? //cy
? ? ? ? ? ? ? ? ? ? float w = pdata[2] * ratiow; ? //w
? ? ? ? ? ? ? ? ? ? float h = pdata[3] * ratioh; ?//h

? ? ? ? ? ? ? ? ? ? int left = (int)(cx - 0.5 * w);
? ? ? ? ? ? ? ? ? ? int top = (int)(cy - 0.5 * h);

? ? ? ? ? ? ? ? ? ? confidences.Add((float)max_class_socre);
? ? ? ? ? ? ? ? ? ? boxes.Add(new Rect(left, top, (int)w, (int)h));
? ? ? ? ? ? ? ? ? ? classIds.Add(class_idx);
? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? row_ind++;
? ? ? ? ? ? ? ? pdata += nout;

? ? ? ? ? ? }

? ? ? ? ? ? int[] indices;
? ? ? ? ? ? CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);

? ? ? ? ? ? result_image = image.Clone();

? ? ? ? ? ? for (int ii = 0; ii < indices.Length; ++ii)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? int idx = indices[ii];
? ? ? ? ? ? ? ? Rect box = boxes[idx];
? ? ? ? ? ? ? ? Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
? ? ? ? ? ? ? ? string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");
? ? ? ? ? ? ? ? Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 0.75, new Scalar(0, 0, 255), 1);
? ? ? ? ? ? }

? ? ? ? ? ? pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
? ? ? ? ? ? textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
? ? ? ? }

? ? ? ? private void pictureBox2_DoubleClick(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? Common.ShowNormalImg(pictureBox2.Image);
? ? ? ? }

? ? ? ? private void pictureBox1_DoubleClick(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? Common.ShowNormalImg(pictureBox1.Image);
? ? ? ? }
? ? }
}

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        float confThreshold;
        float nmsThreshold;
        string modelpath;

        int inpHeight;
        int inpWidth;

        List<string> class_names;
        int num_class;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            confThreshold = 0.3f;
            nmsThreshold = 0.5f;
            modelpath = "model/yolov6s.onnx";

            inpHeight = 640;
            inpWidth = 640;

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

            class_names = new List<string>();
            StreamReader sr = new StreamReader("model/coco.names");
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                class_names.Add(line);
            }
            num_class = class_names.Count();

            image_path = "test_img/image3.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        float sigmoid(float x)
        {
            return (float)(1.0 / (1 + Math.Exp(-x)));
        }

        Mat ResizeImage(Mat srcimg, out int newh, out int neww, out int top, out int left)
        {
            int srch = srcimg.Rows, srcw = srcimg.Cols;
            top = 0;
            left = 0;
            newh = inpHeight;
            neww = inpWidth;
            Mat dstimg = new Mat();
            if (srch != srcw)
            {
                float hw_scale = (float)srch / srcw;
                if (hw_scale > 1)
                {
                    newh = inpHeight;
                    neww = (int)(inpWidth / hw_scale);
                    Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh), 0, 0, InterpolationFlags.Area);
                    left = (int)((inpWidth - neww) * 0.5);
                    Cv2.CopyMakeBorder(dstimg, dstimg, 0, 0, left, inpWidth - neww - left, BorderTypes.Constant);
                }
                else
                {
                    newh = (int)(inpHeight * hw_scale);
                    neww = inpWidth;
                    Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh), 0, 0, InterpolationFlags.Area);
                    top = (int)((inpHeight - newh) * 0.5);
                    Cv2.CopyMakeBorder(dstimg, dstimg, top, inpHeight - newh - top, 0, 0, BorderTypes.Constant);
                }
            }
            else
            {
                Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh));
            }
            return dstimg;
        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            image = new Mat(image_path);

            int newh = 0, neww = 0, padh = 0, padw = 0;
            Mat dstimg = ResizeImage(image, out newh, out neww, out padh, out padw);

            BN_image = CvDnn.BlobFromImage(dstimg, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);

            //配置图片输入数据
            opencv_net.SetInput(BN_image);

            //模型推理,读取推理结果
            Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

            dt1 = DateTime.Now;

            opencv_net.Forward(outs, outBlobNames);

            dt2 = DateTime.Now;

            int num_proposal = outs[0].Size(0);
            int nout = outs[0].Size(1);

            if (outs[0].Dims > 2)
            {
                num_proposal = outs[0].Size(1);
                nout = outs[0].Size(2);
                outs[0] = outs[0].Reshape(0, num_proposal);
            }

            float ratioh = 1.0f * image.Rows / newh, ratiow = 1.0f * image.Cols / neww;
            int n = 0, row_ind = 0; ///cx,cy,w,h,box_score,class_score
            float* pdata = (float*)outs[0].Data;

            List<Rect> boxes = new List<Rect>();
            List<float> confidences = new List<float>();
            List<int> classIds = new List<int>();

            for (n = 0; n < num_proposal; n++)
            {
                float box_score = pdata[4];

                if (box_score > confThreshold)
                {
                    Mat scores = outs[0].Row(row_ind).ColRange(5, nout);
                    double minVal, max_class_socre;
                    OpenCvSharp.Point minLoc, classIdPoint;
                    // Get the value and location of the maximum score
                    Cv2.MinMaxLoc(scores, out minVal, out max_class_socre, out minLoc, out classIdPoint);
                    max_class_socre *= box_score;

                    int class_idx = classIdPoint.X;

                    float cx = (pdata[0] - padw) * ratiow;  //cx
                    float cy = (pdata[1] - padh) * ratioh;   //cy
                    float w = pdata[2] * ratiow;   //w
                    float h = pdata[3] * ratioh;  //h

                    int left = (int)(cx - 0.5 * w);
                    int top = (int)(cy - 0.5 * h);

                    confidences.Add((float)max_class_socre);
                    boxes.Add(new Rect(left, top, (int)w, (int)h));
                    classIds.Add(class_idx);
                }
                row_ind++;
                pdata += nout;

            }

            int[] indices;
            CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);

            result_image = image.Clone();

            for (int ii = 0; ii < indices.Length; ++ii)
            {
                int idx = indices[ii];
                Rect box = boxes[idx];
                Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
                string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");
                Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 0.75, new Scalar(0, 0, 255), 1);
            }

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

源码下载

文章来源:https://blog.csdn.net/weixin_46771779/article/details/134931837
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。