助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv3开发构建生活场景下城市部件检测识别系统

2023-12-27 08:16:40

井盖、店杆、光交箱、通信箱、标石等为城市中常见部件,在方便居民生活的同时,因为后期维护的不及时往往会出现一些“井盖吃人”、“线杆、电杆、线缆伤人”事件。造成这类问题的原因是客观的多方面的,这也是城市化进程不断发展进步的过程中难以完全避免的问题,相信随着城市化的发展完善相应的问题会得到妥善解决。本文的核心目的并不是要来深度分析此类问题形成的深度原因等,而是考虑如何从技术的角度来助力此类问题的解决,这里我们的核心思想是想要基于实况的数据集来开发构建自动化的检测识别模型,对于摄像头所能覆盖的视角内存在的对应设施部件进行关注计算,后期,在业务应用层面可以考虑设定合理的规则和预警逻辑,结合AI的自动检测识别能力来对可能出现的损坏、倒塌、折断等问题进行及时的预警,通知到相关的工程技术人员来进行维护处理,在源头端尽可能地降低可能的损害,感觉这是一个不错的技术与实际生活场景相结合的落地点。

在前文中我们已经进行了相关的项目开发实践,感兴趣的话可以自行移步阅读:
《助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于DETR(DEtection TRansformer)开发构建生活场景下城市部件检测识别系统》

本文主要是选择YOLOv3来开发实现检测模型,首先看下实例效果:

本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。

YOLOv3的主要优点如下:

实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。

多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。

全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。

简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。

YOLOv3也存在一些缺点:

较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。

较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。

YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。

这里是基于实验性的想法做的实践项目,简单看下数据集:

本文选择的是yolov3-tiny模型,如下:

# parameters
nc: 4  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [10,14, 23,27, 37,58]  # P4/16
  - [81,82, 135,169, 344,319]  # P5/32

# YOLOv3-tiny backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [16, 3, 1]],  # 0
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 1-P1/2
   [-1, 1, Conv, [32, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 3-P2/4
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 5-P3/8
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 7-P4/16
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 9-P5/32
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, nn.ZeroPad2d, [0, 1, 0, 1]],  # 11
   [-1, 1, nn.MaxPool2d, [2, 1, 0]],  # 12
  ]

# YOLOv3-tiny head
head:
  [[-1, 1, Conv, [1024, 3, 1]],
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [512, 3, 1]],  # 15 (P5/32-large)

   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, Conv, [256, 3, 1]],  # 19 (P4/16-medium)

   [[19, 15], 1, Detect, [nc, anchors]],  # Detect(P4, P5)
  ]

训练数据配置文件如下:

# path
train: ./dataset/images/train/
val: ./dataset/images/test/


# number of classes
nc: 4

 
# class names
names: ['biaoshi', 'diangan', 'guangjiaoxiang', 'renjing']

默认100次epoch的迭代计算,终端日志输出如下所示:

训练完成如下:

等待训练完成后来整体看下结果详情:

【数据分布可视化】

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【训练可视化】

【Batch实例】

YOLOv3的效果也还是不错的,感兴趣的话也都可以自行动手尝试下!

文章来源:https://blog.csdn.net/Together_CZ/article/details/135197116
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。