detectron2中save_text_instance_predictions?

2023-12-13 04:22:34

demo.py中修改

import json

## 生成json格式的数据
class Result:
    def __init__(self, id, image, value):
        self.id = id
        self.image = image
        self.value = value


def result_encoder(obj):
    if isinstance(obj, Result):
        return {'id': obj.id, 'image': obj.image, 'value': obj.value}
    return json.JSONEncoder.default(obj)
    

    visualized_output.save(out_filename)
    #predictions.save(out_filename)
    #print(predictions)
    res = Result(os.path.basename(path), out_filename, text_output)
    with open(os.path.join(args.output, "data.json"), "a", encoding="utf8") as file:
        json.dump(result_encoder(res), file, ensure_ascii=False, indent=4)

关于路径

assert os.path.isdir(args.output), args.output 
	out_filename = os.path.join(args.output, os.path.basename(path))

Python编程语言判断是否是目录

在Python编程语言中可以使用os.path.isdir()函数判断某一路径是否为目录。其函数原型如下所示。

os.path.isdir(path) 

其参数含义如下。path 要进行判断的路径。以下实例判断E:\book\temp是否为目录。

>>> import os  
>>> os.path.isdir('E:\\book\\temp') 

判断E:\book\temp是否为目录

True 表示 E:\book\temp是目录,注意力 python里面是True不是true

os.path.join()函数用于路径拼接文件路径,可以传入多个路径

>>> import os
>>> print(os.path.join('path','abc','yyy'))
path\abc\yyy

os.path.basename(path)就是给定一串路径的最终找到的那个文件

在这里插入图片描述
在这里插入图片描述
来个例子

import os
# --------------------------------------------------------#
filePath = r"D:\Python\Python35\Lib\site-packages\jieba\analyse\idf.txt"
print('路径为:',filePath)
print(os.path.basename(filePath))
print(os.path.dirname(filePath))
# --------------------------------------------------------#
filePath = r'D:\Python\Python35\Lib\site-packages\jieba'
print('路径为:',filePath)
print(os.path.basename(filePath))
print(os.path.dirname(filePath))

输出

路径为: D:\Python\Python35\Lib\site-packages\jieba\analyse\idf.txt
idf.txt
D:\Python\Python35\Lib\site-packages\jieba\analyse
路径为: D:\Python\Python35\Lib\site-packages\jieba
jieba
D:\Python\Python35\Lib\site-packages
————————————————

原文链接:https://blog.csdn.net/m0_46653437/article/details/115876616

python官方文档链接

将 Python 对象序列化为 JSON 字符串

with open 打开文件,并以写入模式 **创建或覆盖 ** 文件

这段很基础对我很重要,一开始在想,是否需要手动创建之后才能with open……,如果不存在,会自动创建

import json

# 创建一个字典对象


data = {
    "name": "John",
    "age": 30,
    "city": "New York"
}

# 打开文件,并以写入模式创建或覆盖文件
with open("data.json", "w") as file:
    # 将字典对象转换为JSON格式并写入文件
    json.dump(data, file)

上述代码将创建一个名为data.json的JSON文件,并将data字典对象写入文件中。如果你想要格式化输出的JSON文件,使其更易读,你可以使用indent参数指定缩进级别,如下所示:

import json

data = {
    "name": "John",
    "age": 30,
    "city": "New York"
}

with open("data.json", "w") as file:
    json.dump(data, file, indent=4)

作者:百科全书77
链接:https://www.zhihu.com/question/631483792/answer/3299538515
来源:知乎

使用 json.JSONEncoder() 方法

我们还可以使用 json.JSONEncoder() 方法来创建自定义的编码器,将 Python 对象序列化为 JSON 字符串,然后将其写入文件。以下是一个示例:

import json
 
class Person:
    def __init__(self, name, age, city):
        self.name = name
        self.age = age
        self.city = city
 
def person_encoder(obj):
    if isinstance(obj, Person):
        return {'name': obj.name, 'age': obj.age, 'city': obj.city}
    return json.JSONEncoder.default(obj)
 
person = Person('John', 30, 'New York')
 
with open('data.json', 'w') as f:
    json_str = json.dumps(person, default=person_encoder)
    f.write(json_str)

在这个示例中,我们首先定义了一个自定义的类 Person,然后定义了一个自定义的编码器 person_encoder,将 Person 对象序列化为 JSON 格式。最后,我们使用 json.dumps() 方法将 Person 对象序列化为 JSON 字符串,并将其写入文件 data.json 中。

原文链接:Python 如何创建 json 文件?

dump、dumps序列化为json格式和序列化为json字符串,区别?(用到再说)

import json
 
data = {'name': 'John', 'age': 30, 'city': 'New York'}
 
with open('data.json', 'w') as f:
    json.dump(data, f)

在这个示例中,我们使用了 json.dump() 方法将 Python 字典对象 data 序列化为 JSON 格式,并将其写入到文件 data.json 中。

除了使用 json.dump() 方法直接将 Python 对象写入到文件中,我们还可以使用 json.dumps() 方法将 Python 对象序列化为 JSON 字符串,然后将其写入文件。以下是一个示例:

import json
 
data = {'name': 'John', 'age': 30, 'city': 'New York'}
 
with open('data.json', 'w') as f:
    json_str = json.dumps(data)
    f.write(json_str)

在这个示例中,我们首先使用 json.dumps() 方法将 Python 字典对象 data 序列化为 JSON 字符串,然后使用文件对象的 write() 方法将其写入文件 data.json 中。
在这里插入图片描述
python中dict和json的转换以及读取json文件
python 把字典转json
将dict类型变量转换为json存在dump和dumps两个方法
dump将dict转换为str类型
注意
如果想将dict输出到文件中,直接用dumps即可,如果先dump再dumps就会输出一整个字符串,因为有引号的存在并不是正常的json格式

保存列表为.txt文件
#1/list写入txt

ipTable = ['158.59.194.213', '18.9.14.13', '58.59.14.21']  
fileObject = open('sampleList.txt', 'w')  
for ip in ipTable:  
    fileObject.write(ip)  
    fileObject.write('\n')  
fileObject.close()  

python对CSV、Excel、txt、dat、mat文件的处理

python将数据保存为json文件时,打开json文件里面的中文发现是unicode码

开保存之后的json文件发现除了字母,原来的字典数据里面的中文全部变成了unicode码,像下面这个样子
在这里插入图片描述

Python 使用 json.dump() 保存文件时中文会变成 Unicode。在打开写出文件时加入 encoding="utf8",在dump时加入 ensure_ascii=False 即可解决。

city_list = [{"name": "黑龙江呼玛", "lon": 126.6, "lat": 51.72}, 
			/{"name": "黑龙江塔河", "lon": 124.7, "lat": 52.32}, 
			/{"name": "黑龙江漠河", "lon": 122.37, "lat": 53.48}]
f = open("city.json", "w", encoding="utf8")
json.dump(city_list, f, ensure_ascii=False)

总结一下:

1、python3里面默认编码是unicode

2、做dump与dumps操作时,会默认将中文转换为unicode,但在做逆向操作load和loads时会转换为中文,但是中间态(例如存储的json文件)的中文编码方式仍然是unicode

解决办法:
在dump里面添加ensure_ascii=False
原文链接

with open(os.path.join(args.output, “data.json”), “a”) as file: 读写文件参数

在这里插入图片描述
Python实现将内容写入文件的五种方法总结

predictor.py

def run_on_image(self, image):

……
 else:
     if "sem_seg" in predictions:
          vis_output = visualizer.draw_sem_seg(
              predictions["sem_seg"].argmax(dim=0).to(self.cpu_device))
      if "instances" in predictions:
          instances = predictions["instances"].to(self.cpu_device)
          vis_output = visualizer.draw_instance_predictions(predictions=instances)
          
  text_output = visualizer.save_text_instance_predictions(predictions=instances)

  return predictions, vis_output,text_output

追溯到 visualizer.py写的save_text_instance_predictions 函数

visualizer.py中save_text_instance_predictions(deepsolo/adet/visualizer.py,import了 detectron2的visualizer.py?

class TextVisualizer(Visualizer):
……

    def _ctc_decode_recognition(self, rec):
        last_char = '###'
        s = ''
        for c in rec:
            c = int(c)
            if c < self.voc_size - 1:
                if last_char != c:
                    if self.voc_size == 37 or self.voc_size == 96:
                        s += self.CTLABELS[c]
                        last_char = c
                    else:
                        s += str(chr(self.CTLABELS[c]))
                        last_char = c
            else:
                last_char = '###'
        return s

    def draw_instance_predictions(self, predictions):
        ctrl_pnts = predictions.ctrl_points.numpy()
        scores = predictions.scores.tolist()
        recs = predictions.recs
        bd_pts = np.asarray(predictions.bd)

        self.overlay_instances(ctrl_pnts, scores, recs, bd_pts)

        return self.output
    def overlay_instances(self, ctrl_pnts, scores, recs, bd_pnts, alpha=0.4):
        colors = [(0,0.5,0),(0,0.75,0),(1,0,1),(0.75,0,0.75),(0.5,0,0.5),(1,0,0),(0.75,0,0),(0.5,0,0),
        (0,0,1),(0,0,0.75),(0.75,0.25,0.25),(0.75,0.5,0.5),(0,0.75,0.75),(0,0.5,0.5),(0,0.3,0.75)]
        fg=True
        for ctrl_pnt, score, rec, bd in zip(ctrl_pnts, scores, recs, bd_pnts):
            color = random.choice(colors)

            # draw polygons
            if bd is not None:
                bd = np.hsplit(bd, 2)
                bd = np.vstack([bd[0], bd[1][::-1]])
                self.draw_polygon(bd, color, alpha=alpha)

            # draw center lines
            line = self._process_ctrl_pnt(ctrl_pnt)
            line_ = LineString(line)
            center_point = np.array(line_.interpolate(0.5, normalized=True).coords[0], dtype=np.int32)
            # self.draw_line(
            #     line[:, 0],
            #     line[:, 1],
            #     color=color,
            #     linewidth=2
            # )
            # for pt in line:
            #     self.draw_circle(pt, 'w', radius=4)
            #     self.draw_circle(pt, 'r', radius=2)

            # draw text
            text = self._ctc_decode_recognition(rec)

            if self.voc_size == 37:
                text = text.upper()
            # text = "{:.2f}: {}".format(score, text)
            text = "{}".format(text)
            
            lighter_color = self._change_color_brightness(color, brightness_factor=0)
            if bd is not None:
                text_pos = bd[0] - np.array([0,15])
            else:
                text_pos = center_point
            horiz_align = "left"
            font_size = self._default_font_size
            self.draw_text(
                        text,
                        text_pos,
                        color=lighter_color,
                        horizontal_alignment=horiz_align,
                        font_size=font_size,
                        draw_chinese=False if self.voc_size == 37 or self.voc_size == 96 else True
                    )


    def draw_text(
        self,
        text,
        position,
        *,
        font_size=None,
        color="g",
        horizontal_alignment="center",
        rotation=0,
        draw_chinese=False
    ):
        """
        Args:
            text (str): class label
            position (tuple): a tuple of the x and y coordinates to place text on image.
            font_size (int, optional): font of the text. If not provided, a font size
                proportional to the image width is calculated and used.
            color: color of the text. Refer to `matplotlib.colors` for full list
                of formats that are accepted.
            horizontal_alignment (str): see `matplotlib.text.Text`
            rotation: rotation angle in degrees CCW
        Returns:
            output (VisImage): image object with text drawn.
        """
        if not font_size:
            font_size = self._default_font_size

        # since the text background is dark, we don't want the text to be dark
        color = np.maximum(list(mplc.to_rgb(color)), 0.2)
        color[np.argmax(color)] = max(0.8, np.max(color))
        
        x, y = position
        if draw_chinese:
            font_path = "./simsun.ttc"
            prop = mfm.FontProperties(fname=font_path)
            self.output.ax.text(
                x,
                y,
                text,
                size=font_size * self.output.scale,
                family="sans-serif",
                bbox={"facecolor": "white", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
                verticalalignment="top",
                horizontalalignment=horizontal_alignment,
                color=color,
                zorder=10,
                rotation=rotation,
                fontproperties=prop
            )
        else:
            self.output.ax.text(
                x,
                y,
                text,
                size=font_size * self.output.scale,
                family="sans-serif",
                bbox={"facecolor": "white", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
                verticalalignment="top",
                horizontalalignment=horizontal_alignment,
                color=color,
                zorder=10,
                rotation=rotation,
            )
        return self.output

结合这几段,按图索骥,
overlay_instances函数里的

for ctrl_pnt, score, rec, bd in zip(ctrl_pnts, scores, recs, bd_pnts):
……
text = self._ctc_decode_recognition(rec)

总之就是模仿draw_instance_predictions添加了一个函数save_text_instance_predictions

    def save_text_instance_predictions(self, predictions):
        recs = predictions.recs
        text_output = ""
        for rec in recs:
            text_output = text_output + ' ' + self._ctc_decode_recognition(rec)
            
        return text_output   

就是不知道return self.output有什么特别含义,

文章来源:https://blog.csdn.net/qq_51070956/article/details/134834136
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。