【小沐学Python】Python实现WebUI网页图表(gradio)

2023-12-13 16:55:24

1、简介

https://www.gradio.app/

Gradio是用友好的网络界面演示机器学习模型的最快方法,因此任何人都可以在任何地方使用它!

Gradio与他人共享机器学习模型、API或数据科学工作流程的最佳方法之一是创建一个交互式应用程序,允许您的用户或同事在浏览器中尝试演示。

Gradio允许您构建演示并共享它们,所有这些都使用Python。通常只需几行代码!让我们开始吧。
在这里插入图片描述

使用gradio,只需在原有的代码中增加几行,就能自动化生成交互式web页面,并支持多种输入输出格式,比如图像分类中的图>>标签,超分辨率中的图>>图等。

2、安装

Gradio requires Python 3.8 or higher, that’s all!

pip install gradio

在这里插入图片描述

3、基本测试

3.1 入门代码

Run the code below as a Python script or in a Jupyter Notebook (or Google Colab):

import gradio as gr

def greet(name):
    return "小沐: " + name + "!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")
    
if __name__ == "__main__":
    demo.launch(show_api=False)   

浏览器访问:

http://127.0.0.1:7860/

在这里插入图片描述
在本地开发时,如果要将代码作为 Python 脚本运行,可以使用 Gradio CLI 以重新加载模式启动应用程序,这将提供无缝和快速的开发。

gradio test.py

在这里插入图片描述
注意:你也可以这样做,但它不会提供自动重新加载机制。python test.py

3.2 组件属性

假设您要自定义输入文本字段,例如,您希望它更大并具有文本占位符。

import gradio as gr

def greet(name):
    return "小沐: " + name + "!"

demo = gr.Interface(
    fn=greet,
    inputs=gr.Textbox(lines=2, placeholder="Name Here..."),
    outputs="text",
)
demo.launch()

在这里插入图片描述

3.3 多个输入和输出组件

假设您有一个更复杂的函数,具有多个输入和输出。在下面的示例中,我们定义了一个函数,该函数接受字符串、布尔值和数字,并返回字符串和数字。看看如何传递输入和输出组件列表。

import gradio as gr

def greet(name, is_morning, temperature):
    salutation = "Good morning" if is_morning else "Good evening"
    greeting = f"{salutation} {name}. It is {temperature} degrees today"
    celsius = (temperature - 32) * 5 / 9
    return greeting, round(celsius, 2)

demo = gr.Interface(
    fn=greet,
    inputs=["text", "checkbox", gr.Slider(0, 100)],
    outputs=["text", "number"],
)
demo.launch()

在这里插入图片描述

3.4 图像示例

Gradio 支持多种类型的组件,例如 、 、 或 。让我们尝试一个图像到图像功能来感受这些!

import numpy as np
import gradio as gr

def sepia(input_img):
    sepia_filter = np.array([
        [0.393, 0.769, 0.189], 
        [0.349, 0.686, 0.168], 
        [0.272, 0.534, 0.131]
    ])
    sepia_img = input_img.dot(sepia_filter.T)
    sepia_img /= sepia_img.max()
    return sepia_img

demo = gr.Interface(sepia, gr.Image(), "image")
demo.launch()

在这里插入图片描述

3.5 聊天机器人

Gradio 包含一个高级类,它类似于 ,但专为聊天机器人 UI 设计。该类还包装一个函数,但此函数必须具有特定的签名。该函数应该接受两个参数:然后(参数可以命名为任何名称,但必须按此顺序命名).

gr.ChatInterfacegr.Interfacegr.ChatInterfacemessagehistory:

  • message:a 表示用户的输入str
  • history:a 表示在此之前的对话。每个内部列表由两个表示一对组成:。listliststr[user input, bot response]
import random
import gradio as gr

def random_response(message, history):
    return random.choice(["Yes", "No"])

demo = gr.ChatInterface(random_response)

demo.launch()

在这里插入图片描述

3.6 模块:更灵活、更可控

Gradio提供了两种构建应用程序的方法:

  1. Interface 和 ChatInterface,它们为创建我们目前一直在讨论的演示提供了高级抽象。
  2. Blocks,一个低级 API,用于设计具有更灵活布局和数据流的 Web 应用程序。Blocks 允许您执行诸如具有多个数据流和演示、控制组件在页面上的显示位置、处理复杂的数据流(例如,输出可以作为其他函数的输入)以及基于用户交互更新组件的属性/可见性等操作——所有这些都在 Python 中。
import gradio as gr


def greet(name):
    return "Hello " + name + "!"


with gr.Blocks() as demo:
    name = gr.Textbox(label="Name")
    output = gr.Textbox(label="Output Box")
    greet_btn = gr.Button("Greet")
    greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")

demo.launch()

在这里插入图片描述
这里有一个应用程序,可以让你体验到什么是可能的:Blocks

import numpy as np
import gradio as gr


def flip_text(x):
    return x[::-1]


def flip_image(x):
    return np.fliplr(x)


with gr.Blocks() as demo:
    gr.Markdown("Flip text or image files using this demo.")
    with gr.Tab("Flip Text"):
        text_input = gr.Textbox()
        text_output = gr.Textbox()
        text_button = gr.Button("Flip")
    with gr.Tab("Flip Image"):
        with gr.Row():
            image_input = gr.Image()
            image_output = gr.Image()
        image_button = gr.Button("Flip")

    with gr.Accordion("Open for More!"):
        gr.Markdown("Look at me...")

    text_button.click(flip_text, inputs=text_input, outputs=text_output)
    image_button.click(flip_image, inputs=image_input, outputs=image_output)

demo.launch()

在这里插入图片描述

3.7 进度条

import gradio as gr
import time

def slowly_reverse(word, progress=gr.Progress()):
    progress(0, desc="Starting")
    time.sleep(1)
    progress(0.05)
    new_string = ""
    for letter in progress.tqdm(word, desc="Reversing"):
        time.sleep(0.25)
        new_string = letter + new_string
    return new_string

demo = gr.Interface(slowly_reverse, gr.Text(), gr.Text())

demo.launch()

在这里插入图片描述

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(????)
感谢各位大佬童鞋们的支持!( ′ ▽′ )ノ ( ′ ▽′)っ!!!

文章来源:https://blog.csdn.net/hhy321/article/details/134906159
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。