运筹学经典问题(二):最短路问题

2023-12-13 06:02:02

问题描述

给定一个图(有向图或无向图) G = ( V , E ) G = (V, E) G=(V,E) V V V是图中点的集合, E E E是图中边的集合,图中每条边 ( i , j ) ∈ E (i, j) \in E (i,j)E都对应一个权重 c i j c_{ij} cij?(距离或者运输成本等),给定一个起点 u u u和一个终点 z z z,最段路问题就是寻找一条从 s s s出发,到达 z z z的距离最短或者成本最低的路径。
在这里插入图片描述

数学建模

定义:
I I I:点的集合;
o u t ( i ) out(i) out(i):离开点 i i i边的集合;
i n ( i ) in(i) in(i):进入点 i i i边的集合;
x e x_e xe?:是否选择 e e e这条边,0-1变量;
m i n ∑ e ∈ E x e c e s . t . ∑ e ∈ o u t ( i ) x e ? ∑ e ∈ i n ( i ) x e = { 1 , i = u ? 1 , i = z 0 , e l s e min \sum_{e \in E}x_ec_e \\ s.t. \sum_{e \in out(i)}x_e - \sum_{e \in in(i)}x_e= \begin{cases} 1, i=u \\ -1, i=z \\ 0, else \end{cases} mineE?xe?ce?s.t.eout(i)?xe??ein(i)?xe?=? ? ??1,i=u?1,i=z0,else?

上述模型优化目标为最小化路径距离,约束为进出平衡(分了3种点的类型去写约束:始发点只出不进、目的点只进不出、其他点进等于出)。

整数最优解特性

即使把变量 x e x_{e} xe?松弛成 0 ≤ x e ≤ 1 0 \leq x_e \leq1 0xe?1,原问题变成线性规划,该问题仍然存在整数最优解。

模型求解

调用求解器求解即可。

  • 后面补充代码。

参考资料

  1. 最短路径问题.
  2. 运筹优化常用算法、模型及案例实战:Python+Java 实现. 刘兴禄,熊望祺,臧永森,段宏达,曾文佳,陈伟坚.

文章来源:https://blog.csdn.net/JESSIENOTCAR/article/details/134932472
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。